SHALLOW SEISMIC REFLECTION SURVEY FOR IMAGING DEEP-SEATED COAL LAYER - CASE STUDY FROM MUARA ENIM COAL

Authors

  • Muhammad Rizki Ramdhani Center for Mineral, Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources https://orcid.org/0000-0003-4522-5513
  • Muhammad Abdurachman Ibrahim Center for Mineral, Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources
  • Hans E. A. Siregar Center for Mineral, Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources
  • Tony Rahadinata Center for Mineral, Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources

DOI:

https://doi.org/10.30556/imj.Vol24.No1.2021.1131

Keywords:

shallow seismic reflection, deep-seated coal, Muara Enim formation

Abstract

Indonesia has a great potential for deep-seated coal resources. To assist and support the deep-seated coal exploration, a shallow seismic reflection method is applicable for this purpose. This study has conducted a shallow seismic reflection method in Musi Banyuasin Regency, South Sumatera Province. The Muara Enim coal target varies from 100 to 500 meters from the surface. The thickness of the coal layer varies from 2 to 10.65 meters. This study uses 48 channels with 14 Hz single geophone and Mini-Sosie as the energy source. The receiver and source interval is 15 meters. This study uses a fixed receiver and moving source configuration. From the interpreted seismic section, this study identified a deep-seated coal layer target. These layers are Mangus, Burung, Benuang, Kebon and Benakat layers. A simple interpretation is analyzed by combining the seismic amplitude characteristics and the thickness of the coal layer from the borehole data. From the interpreted seismic section, deep-seated coal layer targets have strong amplitude characteristics and are continuous from southwest to the northeast with a down-dip of around 20-30°. This study helps to inform the operator companies who develop the utilization of deep-seated coal (coalbed methane, underground coal gasification and underground coal mining) about the effective and proper geophysical method for imaging deep-seated coal layer.

References

Al-Shuhail, A. A. and Adetunji, A. (2016) ‘Joint inversion of ground-penetrating radar and seismic velocities for porosity and water saturation in shallow sediments’, Journal of Environmental and Engineering Geophysics, 21(3), pp. 105–119. doi: 10.2113/JEEG21.3.105.

Backus, M. M. et al. (2001) ‘Deconvolution’, in Doherty, S. M. (ed.) Seismic Data Analysis. Society of Exploration Geophysicists, pp. 159–270. doi: 10.1190/1.9781560801580.ch2.

Baradello, L. and Accaino, F. (2016) ‘GPR and high resolution seismic integrated methods to understand the liquefaction phenomena in the Mirabello Village (earthquake ML 5.9, 2012)’, Engineering Geology, 211, pp. 1–6. doi: 10.1016/j.enggeo.2016.06.027.

Baysal, E. et al. (2001) ‘Migration’, in Doherty, Stephen M. (ed.) Seismic Data Analysis. Society of Exploration Geophysicists, pp. 463–654. doi: 10.1190/1.9781560801580.ch4.

Bishop, M. G. (2001) South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system. Reston, Virginia.

Boyd, J. D. (1986) ‘Sedimentological analysis of a Miocene deltaic systems: Air Benakat and Muara Enim Formations, Central Merangin Block, South Sumatra’, in Proc. Indon Petrol. Assoc., 15th Ann. Conv. Jakarta: Indonesian Petroleum Association (IPA), pp. 245–258. doi: 10.29118/IPA.1265.245.258.

Bracewell, R. N. et al. (2001) ‘Fundamentals of signal processing’, in Doherty, S. M. (ed.) Seismic Data Analysis. Society of Exploration Geophysicists, pp. 25–158. doi: 10.1190/1.9781560801580.ch1.

Burschil, T., Buness, H., Tanner, D. C., Wielandt‐Schuster, U., Ellwanger, D. and Gabriel, G. (2018) ‘High‐resolution reflection seismics reveal the structure and the evolution of the Quaternary glacial Tannwald Basin’, Near Surface Geophysics, 16(6), pp. 593–610. doi: 10.1002/nsg.12011.

Cao, L., Chang, S. and Yao, Y. (2019) ‘Application of seismic sedimentology in predicating sedimentary microfacies and coalbed methane gas content’, Journal of Natural Gas Science and Engineering, 69, p. 102944. doi: 10.1016/j.jngse.2019.102944.

Chopra, S. and Castagna, J. P. (2014) ‘Seismic observations and historical developments leading to AVO’, in AVO. Society of Exploration Geophysicists, pp. 35–57. doi: 10.1190/1.9781560803201.ch3.

De Coster, G. L. (1974) ‘The geology of the Central and South Sumatra Basins’, in Proc. Indon Petrol. Assoc., 3rd Ann. Conv. Jakarta: Indonesian Petroleum Association (IPA), pp. 77–110. doi: 10.29118/IPA.670.77.110.

Darman, H. and Sidi, F. H. (eds) (2000) An outline of the geology of Indonesia. Jakarta: Indonesian Association of Geologists.

Dehghannejad, M., Malehmir, A., Svensson, M., Lindén, M. and Möller, H. (2017) ‘High-resolution reflection seismic imaging for the planning of a double-train-track tunnel in the city of Varberg, southwest Sweden’, Near Surface Geophysics, 15(3), pp. 226–240. doi: 10.3997/1873-0604.2017011.

Dirgantara, F., Batzle, M. L. and Curtis, J. B. (2011) ‘Maturity characterization and ultrasonic velocities of coals’, Society of Exploration Geophysicists International Exposition and 81st Annual Meeting 2011, SEG 2011, pp. 2308–2312.

Driml, K., Reveleigh, M. and Bartlett, K. (2001) ‘Mini-SOSIE - Successful shallow 3D seismic data acquisition in an environmentally sensitive area’, ASEG Extended Abstracts, 2001(1), pp. 1–4. doi: 10.1071/ASEG2001ab033.

Dwitama, E. P., Ramdhani, M. R., Firmansyah, F. and Purnomo, W. S. (2017) ‘Evaluasi potensi batubara untuk underground coal gasification pada lubang bor JWT-02, Daerah Ampah, Kabupaten Barito Timur, Provinsi Kalimantan Tengah’, Buletin Sumber Daya Geologi, 12(3), pp. 184–192. doi: 10.47599/bsdg.v12i3.50.

Friederich, M. C. and van Leeuwen, T. (2017) ‘A review of the history of coal exploration, discovery and production in Indonesia: The interplay of legal framework, coal geology and exploration strategy’, International Journal of Coal Geology, 178, pp. 56–73. doi: 10.1016/j.coal.2017.04.007.

Gochioco, L. M. (1992) ‘Modeling studies of interference reflections in thin‐layered media bounded by coal seams’, GEOPHYSICS, 57(9), pp. 1209–1216. doi: 10.1190/1.1443336.

Hajnal, Z., Takacs, E., Pandit, B. and Annesley, I. R. (2015) ‘Uranium mineralization indicators from seismic and well log data in the Shea Creek area at the southern margin of the Carswell impact structure, Athabasca Basin, Canada’, Geophysical Prospecting, 63(4), pp. 861–880. doi: 10.1111/1365-2478.12274.

Haris, A. (2017) ‘Coal bed methane properties modeling using improved seismic resolution for estimating gas reserves: A case study of East Kalimantan field, Indonesia’, International Journal of GEOMATE, 13(40), pp. 81–87. doi: 10.21660/2017.40.61057.

Hearn, S. (2004) ‘Shallow, high-resolution converted-wave seismology for coal exploration’, ASEG Extended Abstracts, 2004(1), pp. 1–4. doi: 10.1071/ASEG2004ab066.

Hearn, S. and Hendrick, N. (2001) ‘Bandwidth requirements for shallow, high-resolution seismic reflection’, ASEG Extended Abstracts, 2001(1), pp. 1–4. doi: 10.1071/ASEG2001ab057.

Kusumo, A. D., Sulistijo, B. and Notosiswoyo, S. (2013) ‘The conceptual method of crosswell seismic reflection for underground coal mine planning in Indonesia’, Procedia Earth and Planetary Science, 6, pp. 195–201. doi: 10.1016/j.proeps.2013.01.026.

Li, D., Liao, H., Ding, Z. and Wu, P. (2016) ‘Detection of the Shuangshi-Dachuan fault using shallow seismic reflection in the Southern Section of the Longmenshan fault zone’, Journal of Environmental and Engineering Geophysics, 21(4), pp. 161–172. doi: 10.2113/JEEG21.4.161.

Li, G., Chen, G. and Zhong, J. (2009) ‘Analysis of geophone properties effects for land seismic data’, Applied Geophysics, 6(1), pp. 93–101. doi: 10.1007/s11770-009-0003-4.

Li, Q., Chen, J. and He, J. (2016) ‘Experimental study of rock physics of coalbed methane reservoirs in Qinshui Basin’, in 2016 Workshop: Rock Physics and Borehole Geophysics, Beijing, China, 28-30 August 2016. Society of Exploration Geophysicists, pp. 13–16. doi: 10.1190/RP2016-004.

Li, Q., Peng, S. and Zou, G. (2015) ‘High resolution processing of 3D seismic data for thin coal seam in Guqiao coal mine’, Journal of Applied Geophysics, 115, pp. 32–39. doi: 10.1016/j.jappgeo.2015.02.014.

Malehmir, A., Wang, S., Lamminen, J., Brodic, B., Bastani, M., Vaittinen, K., Juhlin, C. and Place, J. (2015) ‘Delineating structures controlling sandstone-hosted base-metal deposits using high-resolution multicomponent seismic and radio-magnetotelluric methods: a case study from Northern Sweden’, Geophysical Prospecting, 63(4), pp. 774–797. doi: 10.1111/1365-2478.12238.

Maraio, S., Bruno, P. P. G., Picotti, V., Mair, V. and Brardinoni, F. (2018) ‘High-resolution seismic imaging of debris-flow fans, alluvial valley fills and hosting bedrock geometry in Vinschgau/Val Venosta, Eastern Italian Alps’, Journal of Applied Geophysics, 157, pp. 61–72. doi: 10.1016/j.jappgeo.2018.07.001.

Mavko, G., Mukerji, T. and Dvorkin, J. (no date) ‘Empirical relations’, in The Rock Physics Handbook. Cambridge: Cambridge University Press, pp. 347–388. doi: 10.1017/CBO9780511626753.008.

Miller, R., Black, W., Miele, M., Morgan, T., Ivanov, J., Peterie, S. and Wang, Y. (2016) ‘High-resolution seismic reflection to improve accuracy of hydrogeologic models in Ventura County, California, USA’, The Leading Edge, 35(9), pp. 760–769. doi: 10.1190/tle35090760.1.

Minjbouw, S. N. V. (1978) Explanatory notes to the geological map of the South Sumatran coal Province.

Morcote, A., Mavko, G. and Prasad, M. (2010) ‘Dynamic elastic properties of coal’, GEOPHYSICS, 75(6), pp. E227–E234. doi: 10.1190/1.3508874.

Okkonen, J. and Moisio, K. (2015) ‘Seismic reflection surveys in glaciofluvial deposits in Finland’, Near Surface Geophysics, 13(5), pp. 417–433. doi: 10.3997/1873-0604.2015034.

Pan, J., Meng, Z., Hou, Q., Ju, Y. and Cao, Y. (2013) ‘Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition’, Journal of Structural Geology, 54, pp. 129–135. doi: 10.1016/j.jsg.2013.07.008.

Peng, H., Wei, J. and Di, B. (2015) ‘A physical model of the shielding effect of coalbeds’, in SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, pp. 3651–3655. doi: 10.1190/segam2015-5863057.1.

PPSDMBP (2020) Neraca sumber daya dan cadangan mineral batubara dan panas bumi status 2019. Pusat Sumber Daya Mineral batubara dan Panas Bumi.

Purnama, A. and Huda, M. (2019) ‘A preliminary study of Indonesian coal basins for underground coal gasification development’, Indonesian Mining Journal, 22(1), pp. 61–76. doi: 10.30556/imj.Vol22.No1.2019.275.

Ronen, J. and Claerbout, J. F. (1985) ‘Surface‐consistent residual statics estimation by stack‐power maximization’, GEOPHYSICS, 50(12), pp. 2759–2767. doi: 10.1190/1.1441896.

Simm, R. and Bacon, M. (2014) ‘Rock properties and AVO’, in Seismic Amplitude. Cambridge: Cambridge University Press, pp. 58–109. doi: 10.1017/CBO9780511984501.006.

Strong, S., Alderman, J. and Hearn, S. (2016) ‘Imaging of shallow coal structures using 2D6C Mini-SOSIE’, ASEG Extended Abstracts, 2016(1), pp. 1–5. doi: 10.1071/ASEG2016ab286.

Strong, S. and Hearn, S. (2004) ‘Numerical modelling of pseudo-random land seismic sources’, ASEG Extended Abstracts, 2004(1), pp. 1–4. doi: 10.1071/ASEG2004ab142.

Suryana, A. (2001) Pengkajian batubara bersistem dalam cekungan Sumatera Selatan di daerah Sungai Pinang dan sekitarnya, Kabupaten Musirawas dan Kabupaten Musi Banyuasin, Provinsi Sumatera Selatan.

Thomas, L. (2012) ‘Geophysics of coal’, in Coal Geology. 2nd edn. Chichester, UK: John Wiley & Sons, Ltd, pp. 211–252. doi: 10.1002/9781118385685.ch8.

Veeken, P. C. H. and Moerkerken, B. van (2013) ‘The seismic reflection method and its constraints’, in Seismic Stratigraphy and Depositional Facies Models. Elsevier, pp. 15–104. doi: 10.1016/B978-0-12-411455-5.50002-4.

Wang, Y., Cui, R., Zhang, S., Dai, F. and Jia, W. (2011) ‘Application of AVO Inversion to the Forecast of Coalbed Methane Area’, Procedia Earth and Planetary Science, 3, pp. 210–216. doi: 10.1016/j.proeps.2011.09.085.

Widess, M. B. (1973) ‘How thin is a bed?’, GEOPHYSICS, 38(6), pp. 1176–1180. doi: 10.1190/1.1440403.

Yao, Q. and Han, D. (2008) ‘Acoustic properties of coal from lab measurement’, in SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, pp. 1815–1819. doi: 10.1190/1.3059254.

Yilmaz, Ö. (2015) ‘Seismic modeling of the soil column’, in Miller, R. D. (ed.) Engineering Seismology with Applications to Geotechnical Engineering. Society of Exploration Geophysicists, pp. 159–370. doi: 10.1190/1.9781560803300.ch2.

Yilmaz, Ö. and Claerbout, J. F. (1980) ‘Prestack partial migration’, GEOPHYSICS, 45(12), pp. 1753–1779. doi: 10.1190/1.1441064.

Yuan, Y., Gao, Y., Bai, L. and Liu, Z. (2011) ‘Prestack Kirchhoff time migration of 3D coal seismic data from mining zones’, Geophysical Prospecting, 59(3), pp. 455–463. doi: 10.1111/j.1365-2478.2010.00932.x.

Yushendri, Y. F., Sukotjo, A., Raguwanti, R., Widarto, D. S. and Nurhandoko, B. E. B. (2013) ‘Seismic rock physics of the South Sumatra basin coal, Indonesia’, in Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, 18-21 November 2013. Society of Exploration Geophysicists of Japan, pp. 402–406. doi: 10.1190/segj112013-102.

Zhou, B., Hatherly, P., Peters, T. and Sun, W. (2014) ‘Coal seismic surveying over near-surface basalts: Experience from Central Queensland, Australia’, GEOPHYSICS, 79(2), pp. B109–B122. doi: 10.1190/geo2013-0259.1.

Zou, G., Peng, S., Yin, C., Xu, Y., Chen, F. and Liu, J. (2013) ‘Seismic studies of coal bed methane content in the west coal mining area of Qinshui Basin’, International Journal of Mining Science and Technology, 23(6), pp. 795–803. doi: 10.1016/j.ijmst.2013.10.003.

Zou, G., Xu, Z., Peng, S. and Fan, F. (2018) ‘Analysis of coal seam thickness and seismic wave amplitude: A wedge model’, Journal of Applied Geophysics, 148, pp. 245–255. doi: 10.1016/j.jappgeo.2017.11.013.

Downloads

Published

2021-10-30