DEVELOPMENT OF LATERITE ORE PROCESSING AND ITS APPLICATIONS

Authors

  • Fathan Bahfie 1. Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia 2. Physic Department, FMIPA, Universitas Indonesia https://orcid.org/0000-0003-3460-469X
  • Azwar Manaf Physic Department, FMIPA, Universitas Indonesia
  • Widi Astuti Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia
  • Fajar Nurjaman Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia
  • Erik Prastyo Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia
  • Ulin Herlina Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia

DOI:

https://doi.org/10.30556/imj.Vol25.No2.2022.1261

Keywords:

nickel, bioleaching, nickel laterite ore, hydrometallurgy, pyrometallurgy

Abstract

Nickel ore is found in two types sulfide and laterite. The sulfide is a nickel ore that has high nickel content and low reserves of natural resources than of the zinc laterite. In contrast, the laterite is a rock mineral that contains the iron-nickel oxide compounds. There are two methods of processing nickel laterite, namely hydrometallurgy and pyrometallurgy. The former is a method that uses leaching by a chemical solution or solid such as acid, as a reducing agent. The alkaline leaching (ammonia) is the most optimal method to obtain a nickel grade with the highest recovery but it needs more modification. Pyrometallurgical method uses high heat up to 1800°C, so it requires a lot of energy and needs improvement to decrease the carbon usage. The rotary kiln-electric furnace method is the optimal method for developing the nickel laterite. These methods generate products that can be applied to various fields. For example, the pyrometallurgy method produces nickel pig iron and ferronickel as raw materials for stainless steel and steel alloys. The hydrometallurgy method produces nickel sulfate and nickel oxide with a purity of 99% by weight as raw materials for magnets, sensors, and batteries. Hence, the hydrometallurgy method still needs improvements for the environmentally friendly reagent. Therefore, bioleaching will be a nickel laterite leaching process in the future by using bacteria as the reducing agent.

Author Biography

Fathan Bahfie, 1. Research Unit for Mineral Technology, Innovation and Research National Agency Indonesia 2. Physic Department, FMIPA, Universitas Indonesia

Kelompok Penelitian Pirometalurgi/Peneliti pertama

References

Agacayak, T., Zedef, V. and Aras, A. (2016) ‘Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution’, Journal of Central South University, 23(1), pp. 39–43. doi: 10.1007/s11771-016-3046-8.

Al-Khirbash, S. (2015) ‘Genesis and mineralogical classification of Ni-laterites, Oman Mountains’, Ore Geology Reviews, 65, pp. 199–212. doi: 10.1016/j.oregeorev.2014.09.022.

Arroyo, J. C. and Neudorf, D. A. (2001) ‘Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores’. United State.

Astuti, W., Hirajima, T., Sasaki, K. and Okibe, N. (2016) ‘Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores’, Hydrometallurgy, 161, pp. 138–151. doi: 10.1016/j.hydromet.2015.12.015.

Bahfie, F., Manaf, A., Astuti, W. and Nurjaman, F. (2021) ‘Studies on reduction characteristics of limonite and effect of sodium sulphate on the selective reduction to nickel’, Journal of The Institution of Engineers (India): Series D, 102(1), pp. 149–157. doi: 10.1007/s40033-020-00240-3.

Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F. and Herlina, U. (2021) ‘Tinjauan teknologi proses ekstraksi bijih nikel laterit’, Jurnal Teknologi Mineral dan Batubara, 17(3), pp. 135–152. doi: 10.30556/jtmb.Vol17.No3.2021.1156.

Bahfie, F., Murti, D. U., Nuryaman, A., Astuti, W., Nurjaman, F., Prasetyo, E., S. Sudibyo and Susanti, D. (2022) ‘Kinetic Properties of Nickel Leaching by ANOVA Method’, Progress in Physics of Metals, 23(3), pp. 476–488. doi: 10.15407/ufm.23.03.476.

Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F. and Prasetyo, E. (2022) ‘Studies of carbon percentage variation and mixing Saprolite-Limonite in selective reduction’, Materials Today: Proceedings, 62, pp. 4156–4160. doi: 10.1016/j.matpr.2022.04.679.

Bahfie, F., Shofi, A., Herlina, U., Handoko, A. S., Septiana, N. A., Syafriadi, Suharto, Sudibyo, Suhartono and Nurjaman, F. (2022) ‘The effect of sulfur, temperature, the duration of the process and reductant on the selective reduction of limonite ore’, Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 38(1), pp. 123–135. doi: 10.24425/gsm.2022.140606.

Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., Prasetyo, E. and Sumardi, S. (2022) ‘Thermal upgrading of nickel from limonite by means of selective reduction’, Izvestiya. Ferrous Metallurgy, 65(7), pp. 471–478. doi: 10.17073/0368-0797-2022-7-471-478.

Bahfie, F., Supriadi, M. R., Oediyani, S., Nurjaman, F., Astuti, W., Prasetyo, E. and Susanti, D. (2022) ‘Use of monosodium glutamate (MSG) for green leaching process: An overview’, Periodico di Mineralogia, 91(2), pp. 155–162. doi: 10.13133/2239-1002/17756.

Bosecker, K. (1986) ‘Leaching of lateritic nickel ores with heterotrophic microorganisms’, in Lawrence, R. W., Branion, R. M. R., and Ebner, H. G. (eds) Fundamental and Applied Biohydrometallurgy. Canada: Elsevier.

BPH Minerals International (1996) ‘Process for recovering nickel from high-magnesium containing Ni-Fe-Mg lateritic ore’. United State.

Bunjaku, A., Kekkonen, M., Pietilä, K. and Taskinen, P. (2012) ‘Effect of mineralogy and reducing agent on reduction of saprolitic nickel ores’, Mineral Processing and Extractive Metallurgy, 121(3), pp. 156–165. doi: 10.1179/1743285512Y.0000000010.

Burger, P. A. (1996) ‘Origins and characteristics of lateritic nickel deposits’, in Grimsey, E. J. and Neuss, I. (eds) Nickel ’96, Mineral to Market. Carlton: Australasian Institute of Mining and Metallurgy, pp. 179–184.

Burgstaller, W. and Schinner, F. (1993) ‘Metaheaching with fungi’, in Torma, A. E., Wey, J. E., and Lakshmanan, V. I. (eds) International Symposium on Biohydrometallurgy. Warrendale: TMS, pp. 325–333.

Chen, S., Guo, X., Shi, W. and Li, D. (2010) ‘Extraction of valuable metals from low-grade nickeliferous laterite ore by reduction roasting-ammonia leaching method’, Journal of Central South University of Technology, 17(4), pp. 765–769. doi: 10.1007/s11771-010-0554-9.

Dalvi, A. D., Bacon, W. G. and Osborne, R. C. (2004) ‘The past and the future of nickel laterites’, in PDAC 2004 International Conference Trade Show and Investors Exchange. Toronto: PDAC, pp. 1–27.

Deepatana, A., Tang, J. A. and Valix, M. (2006) ‘Comparative study of chelating ion exchange resins for metal recovery from bioleaching of nickel laterite ores’, Minerals Engineering, 19(12), pp. 1280–1289. doi: 10.1016/j.mineng.2006.04.015.

Duyvesteyn, W. P. C. and Liu, H. (2002) ‘Process for organic acid bioleaching of ore’. United State.

Elias, M., Donaldson, M. J. and Giorgetta, N. E. (1981) ‘Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia’, Economic Geology, 76(6), pp. 1775–1783. doi: 10.2113/gsecongeo.76.6.1775.

Elliott, R., Rodrigues, F., Pickles, C. A. and Peacey, J. (2015) ‘A two-stage thermal upgrading process for nickeliferous limonitic laterite ores’, Canadian Metallurgical Quarterly, 54(4), pp. 395–405. doi: 10.1179/1879139515Y.0000000009.

Gibson, R. W. and Rice, N. M. (1977) ‘A hydrochloric acid process for nickeliferous laterites’, in Cooper, W. C. and Mihaylov, I. (eds) Hydrometallurgy and Refining of Nickel and Cobalt, Vol. 1. Montreal: The Metallurgical Society of CIM, pp. 247–261.

Handayani, S. and Suratman, S. (2016) ‘Bioleaching of low grade nickel ore using indigenous fungi’, Indonesian Mining Journal, 19(3), pp. 143–152. doi: 10.30556/imj.Vol19.No3.2016.540.

Harris, B., White, C., Jansen, M. and Pursell, D. (2006) ‘A new approach to high concentration chloride leaching of nickel laterites’, in ALTA Nickel/Cobalt/Copper Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 1–20.

Harris, B. and White, C. (2008) ‘Recent developments in the high-strength chloride leaching of base metal sulphide ores’, in ALTA Nickel/Cobalt Conference 2008. Melbourne: ALTA Metallurgical Services Publications, pp. 170–184.

Harris, G. B., Magee, T. J. and Lakshman, V. I. (2004) ‘The Jaguar Nickel Inc. sechol laterite project atmospheric chloride leach process’, in Annual Meeting and International Laterite Nickel Symposium. Warrendale: TMS, pp. 219–241.

Harris, G. B., White, C. W. and Demopoulos, G. P. (2006) ‘Iron control in high-concentration chloride leaching processes’, in Third International Symposium on Iron Control in Hydrometallurgy. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, pp. 445–464.

Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N. and Zhang, S. (2013) ‘Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process’, International Journal of Mineral Processing, 123, pp. 32–38. doi: 10.1016/j.minpro.2013.04.005.

Keskinkilic, E., Pournaderi, S., Geveci, A. and Topkaya, Y. (2012) ‘Calcination characteristics of laterite ores from the central region of Anatolia’, Journal- South African Institute of Mining and Metallurgy, 112, pp. 877–882.

Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S. and Fujita, T. (2010) ‘Calcination of low-grade laterite for concentration of Ni by magnetic separation’, Minerals Engineering, 23(4), pp. 282–288. doi: 10.1016/j.mineng.2010.01.005.

King, M. G. (2005) ‘Nickel laterite technology—Finally a new dawn?’, JOM, 57(7), pp. 35–39. doi: 10.1007/s11837-005-0250-7.

Königsberger, E., May, P. and Harris, B. (2008) ‘Properties of electrolyte solutions relevant to high concentration chloride leaching I. Mixed aqueous solutions of hydrochloric acid and magnesium chloride’, Hydrometallurgy, 90(2–4), pp. 177–191. doi: 10.1016/j.hydromet.2007.10.009.

Kyle, J. (2010) ‘Nickel laterite processing technologies – where to next?’, in ALTA 2010 Nickel/Cobalt/Copper Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 30–66.

Kyle, J. H. (1999) ‘Water quality in nickel laterite processing’, in Water Management in Metallurgical Operations conference. Perth: Australian Mineral Foundation Inc.

Li, B., Wang, H. and Wei, Y. (2011) ‘The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidisation method’, Minerals Engineering, 24(14), pp. 1556–1562. doi: 10.1016/j.mineng.2011.08.006.

Liu, H., Gillaspie, J., Lewis, C., Neudorf, D. and Barnett, S. (2004) ‘Atmospheric leaching of laterites with iron precipitation as goethite’, in Imrie, P. W. and Lane, D. M. (eds) International Laterite Nickel Symposium 2004. Charlotte: TMS, pp. 347–368.

Lv, X., Bai, C., He, S. and Huang, Q. (2010) ‘Mineral change of philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter’, ISIJ International, 50(3), pp. 380–385. doi: 10.2355/isijinternational.50.380.

Ma, X., Cui, Z. and Zhao, B. (2016) ‘Efficient utilization of nickel laterite to produce master alloy’, JOM, 68(12), pp. 3006–3014. doi: 10.1007/s11837-016-2028-5.

MacCarthy, J., Nosrati, A., Skinner, W. and Addai-Mensah, J. (2016) ‘Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore’, Hydrometallurgy, 160, pp. 26–37. doi: 10.1016/j.hydromet.2015.11.004.

Marshall, D. and Buarzaiga, M. (2004) ‘Effect of process water on high pressure acid leaching of laterite ores’, in Imrie, P. W. and Lane, D. M. (eds) International Laterite Nickel Symposium 2004. Charlotte: TMS, pp. 263–271.

McDonald, R. G. and Whittington, B. I. (2008) ‘Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies’, Hydrometallurgy, 91(1–4), pp. 56–69. doi: 10.1016/j.hydromet.2007.11.010.

Moyes, J., Houllis, F., Tong, A. and Sammut, D. (2005) ‘The Intec nickel laterite process’, in ALTA 2005 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 136–155.

Neudorf, D. (2006) ‘Method for nickel and cobalt recovery from laterite ores by reaction with concentrated acid water leaching’. United State.

Nurjaman, F., Shofi, A., Bahfie, F. and Suharno, B. (2015) ‘Teknologi pembuatan spiegel pig iron menggunakan hot blast cupola furnace’, Jurnal RISET Geologi dan Pertambangan, 25(1), pp. 13–22. doi: 10.14203/risetgeotam2015.v25.138.

Nurjaman, F., Saekhan, K., Bahfie, F., Astuti, W. and Suharno, B. (2021) ‘Effect of binary basicity (CaO/SiO2) on selective reduction of lateritic nickel ore’, Periodico di Mineralogia, 90(2), pp. 91–97.

Nurjaman, F., Sari, Y., Manurung, P., Handoko, A. S., Bahfie, F., Astuti, W. and Suharno, B. (2021) ‘Study of binary, ternary, and quaternary basicity in reduction of saprolitic nickel ore’, Transactions of the Indian Institute of Metals, 74(12), pp. 3249–3263. doi: 10.1007/s12666-021-02391-7.

Nurjaman, F., Astuti, W., Bahfie, F. and Suharno, B. (2021) ‘Study of selective reduction in lateritic nickel ore: Saprolite versus limonite’, Materials Today: Proceedings, 44, pp. 1488–1494. doi: 10.1016/j.matpr.2020.11.687.

Nurjaman, F., Sa’adah, A. and Suharno, B. (2019) ‘Optimal conditions for selective reduction process of nickel laterite ore’, IOP Conference Series: Materials Science and Engineering, 523(1), p. 012068. doi: 10.1088/1757-899X/523/1/012068.

Pickles, C. A., Harris, C. T., Peacey, J. and Forster, J. (2013) ‘Thermodynamic analysis of the Fe–Ni–Co–Mg–Si–O–H–S–C–Cl system for selective sulphidation of a nickeliferous limonitic laterite ore’, Minerals Engineering, 54, pp. 52–62. doi: 10.1016/j.mineng.2013.03.029.

Pickles, C. A. and Elliott, R. (2015) ‘Thermodynamic analysis of selective reduction of nickeliferous limonitic laterite ore by carbon monoxide’, Mineral Processing and Extractive Metallurgy, 124(4), pp. 208–216. doi: 10.1179/1743285515Y.0000000009.

Pickles, C. A., Forster, J. and Elliott, R. (2014) ‘Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore’, Minerals Engineering, 65, pp. 33–40. doi: 10.1016/j.mineng.2014.05.006.

Pournaderi, S., Keskinkılıç, E., Geveci, A. and Topkaya, Y. A. (2014) ‘Reducibility of nickeliferous limonitic laterite ore from Central Anatolia’, Canadian Metallurgical Quarterly, 53(1), pp. 26–37. doi: 10.1179/1879139513Y.0000000099.

Prasetyo, P. (2016) ‘Sumber daya mineral di Indonesia khususnya bijih nikel laterit and masalah pengolahannya sehubungan dengan UU Minerba 2019’, in Seminar Nasional Sains dan Teknologi 2016. Jakarta: Fakultas Teknik Universitas Muhammadiyah Jakarta, p. TM-008.

Quast, K., Connor, J. N., Skinner, W., Robinson, D. J. and Addai-Mensah, J. (2015) ‘Preconcentration strategies in the processing of nickel laterite ores Part 1: Literature review’, Minerals Engineering, 79, pp. 261–268. doi: 10.1016/j.mineng.2015.03.017.

Rhamdhani, M. A., Chen, J., Hidayat, T., Jak, E. and Hayes, P. (2009) ‘Advances in research on nickel production through the Caron process’, in Proceedings of EMC 2009. Melbourne: TMS, pp. 899–913.

Rhamdhani, M. A., Jak, E. and Hayes, P. C. (2008) ‘Basic nickel Carbonate: Part I. Microstructure and phase changes during oxidation and reduction processes’, Metallurgical and Materials Transactions B, 39(2), pp. 218–233. doi: 10.1007/s11663-007-9124-4.

Rice, N. M. (2016) ‘A hydrochloric acid process for nickeliferous laterites’, Minerals Engineering, 88, pp. 28–52. doi: 10.1016/j.mineng.2015.09.017.

Steemson, M. L. and Smith, M. E. (2009) ‘The development of nickel laterite heap leach projects’, in ALTA 2009 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 429–451.

Steyl, J. D. T., Peiser, M. and Smit, J. T. (2008) ‘Atmospheric leach process for nickel laterite ores’, in Courtney, A. Y. et al. (eds) Proceedings 6th International Symposium. Colorado: Society for Mining, Metallurgy, and Exploration, pp. 541–550.

Stober, F., Walker, C., Voermann, N., Solar, M. and Wasmund, B. (2008) ‘‘Evolution and future of Rotary Kiln - Electric Furnace (RKEF) plants for smelting of nickel laterites’, in ALTA 2008 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 7–28.

Tan, I. (2008) ‘Canegrass nickel-cobalt heap leaching project – An emerging nickel producer’, in ALTA 2008 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 59–122.

Tang, J. A. and Valix, M. (2006) ‘Leaching of low grade limonite and nontronite ores by fungi metabolic acids’, Minerals Engineering, 19(12), pp. 1274–1279. doi: 10.1016/j.mineng.2006.04.009.

Taylor, A. (2000) ‘Future trends in PAL plant design for Ni/Co laterites’, in ALTA 2000 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 417–431.

Ucyldiz, A. and Girgin, I. (2017) ‘High pressure sulphuric acid leaching of lateritic nickel ore’, Physicochemical Problems of Mineral Processing, 53(1), p. 475−488. doi: 10.5277/ppmp170137.

Valix, M., Tang, J. Y. and Cheung, W. H. (2001) ‘The effects of mineralogy on the biological leaching of nickel laterite ores’, Minerals Engineering, 14(12), pp. 1629–1635. doi: 10.1016/S0892-6875(01)00181-9.

Verbaan, N., Sist, F., Mackie, S. and Todd, I. (2007) ‘Development and piloting of Skye’s atmospheric limonite and saprolite leach process (SAL) at SGS minerals’, in ALTA 2007 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 464–486.

Wang, X., Sun, T., Chen, C. and Hu, T. (2017) ‘Current studies of treating processes for nickel laterite ores’, in Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2017). Paris, France: Atlantis Press, pp. 139–152. doi: 10.2991/icmeit-17.2017.27.

Wedderburn, B. (2009) ‘Nickel laterite processing - A shift towards heap leaching’, in ALTA 2009 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 362–428.

Wen, J. and Ruan, R. (2006) ‘Heap leaching - An option of treating nickel laterite ore and sulphide’, in ALTA 2006 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 439–447.

West, J. and Connolly, D. (2007) ‘Comparative leaching strategies’, in AuslMM Australian Nickel Conference. Kalgoorlie: AusMM.

Willis, B. (2008) ‘Trends in PAL down stream recovery options’, in ALTA 2008 Nickel/Cobalt Conference. Melbourne: ALTA Metallurgical Services Publications, pp. 545–599.

Zevgolis, E. N., Zografidis, C., Perraki, T. and Devlin, E. (2010) ‘Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide’, Journal of Thermal Analysis and Calorimetry, 100(1), pp. 133–139. doi: 10.1007/s10973-009-0198-x.

Zhang, W., Mason, P., Wang, W. and Zhu, Z. (2009) ‘Preliminary tests for manganese removal from nickel laterite mixed hydroxide precipitation circuit by oxidative precipitation with SO2/Air’, in 48th Annual Conference of Metallurgists: Hydrometallurgy of Nickel and Cobalt Symposium. Sadbury: Canadian Institute of Mining, Metallurgy and Petroleum.

Zulhan, Z. (2020) ‘Hilirisasi komoditas nikel’, in Webinar Keprofesian Teknik Metalurgi “Masa Depan Nikel Indonesia”. Bandung: Ikatan Alumni Teknik Metalurgi ITB.

Downloads

Published

2022-12-19

Most read articles by the same author(s)