MINI REVIEW OF ADSORPTION METHOD USING CONVENTIONAL MATERIALS FOR ACID MINE DRAINAGE TREATMENT

Authors

  • Yudha Gusti Wibowo Institut Teknologi Sumatera https://orcid.org/0000-0003-1013-7732
  • Natasya Tsabitah Institut Teknologi Sumatera
  • Cantika Puspita Pratiwi Institut Teknologi Sumatera
  • Herlina Nur'ani Institut Teknologi Sumatera
  • Rilis Irene Institut Teknologi Sumatera
  • Mirza Trinanda Syahnur Institut Teknologi Sumatera
  • Putri Sinar Al-azizah Institut Teknologi Sumatera
  • Aryo Yudhoyono
  • Candra Wijaya
  • Bonifasius Revo Gifta Lululangi
  • Kholivia Cahyani
  • Dody Oktantiyo S
  • Anis Tatik Maryani

DOI:

https://doi.org/10.30556/imj.Vol27.No1.2024.1505

Keywords:

acid mine drainage, adsorption, activated carbon, biochar, conventional material

Abstract

Acid mine drainage (AMD) is a highly dangerous form of water pollution results from coal mining activities. AMD is characterized by its high concentration of heavy metals and low pH levels, which have been linked to various health problems, including skin disease, cancer, and poisoning. This paper presents a comprehensive review of the available information on the AMD and its alternative low-cost treatment methods. One such method is adsorption, an eco-friendly and cost-effective approach to treating the AMD. This review draws on 99 published papers as the sources that provide a comprehensive overview of the AMD sources and problems worldwide. This study explores the potential of conventional materials, such as activated carbon, biochar, and other materials for treating the AMD. A special section on conventional materials is well-detailed and provides valuable insights into their effectiveness. It is essential to explore the alternative treatment methods that are both environmentally friendly and cost-effective. This review provides valuable insights in this regard. By using the low-cost and sustainable methods, we can effectively treat AMD and reduce its impact on the environment and human health.

References

Abdel-Raouf, M. and Abdel-Rahim, M. (2016) ‘Removal of heavy metals from industrial waste water by biomass-based materials: A review’, Journal of Pollution Effects & Control, 05(01). Available at: https://doi.org/10.4172/2375-4397.1000180.

Acharya, B.S. and Kharel, G. (2020) ‘Acid mine drainage from coal mining in the United States – An overview’, Journal of Hydrology, 588, p. 125061. Available at: https://doi.org/10.1016/j.jhydrol.2020.125061.

Ahmad, A. and Azam, T. (2019) ‘Water purification technologies’, in Bottled and Packaged Water. Elsevier, pp. 83–120. Available at: https://doi.org/10.1016/B978-0-12-815272-0.00004-0.

Akar, T. and Tunali, S. (2005) ‘Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions’, Minerals Engineering, 18(11), pp. 1099–1109. Available at: https://doi.org/10.1016/j.mineng.2005.03.002.

Akinpelu, E.A., Ntwampe, S.K.O., Fosso-Kankeu, E., Nchu, F. and Angadam, J.O. (2021) ‘Performance of microbial community dominated by Bacillus spp. in acid mine drainage remediation systems: A focus on the high removal efficiency of SO42-, Al3+, Cd2+, Cu2+, Mn2+, Pb2+, and Sr2+’, Heliyon, 7(6), p. e07241. Available at: https://doi.org/10.1016/j.heliyon.2021.e07241.

Akinwekomi, V., Maree, J.P., Masindi, V., Zvinowanda, C., Osman, M.S., Foteinis, S., Mpenyana-Monyatsi, L. and Chatzisymeon, E. (2020) ‘Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum – Gearing towards a circular economy concept’, Minerals Engineering, 148, p. 106204. Available at: https://doi.org/10.1016/j.mineng.2020.106204.

Baker, F.S., Miller, C.E., Repik, A.J. and Tolles, E.D. (2000) ‘Activated carbon’, in Kirk-Othmer encyclopedia of chemical technology. Wiley. Available at: https://doi.org/10.1002/0471238961.0103200902011105.a01.

Bello, O.S., Adegoke, K.A. and Akinyunni, O.O. (2017) ‘Preparation and characterization of a novel adsorbent from Moringa oleifera leaf’, Applied Water Science, 7(3), pp. 1295–1305. Available at: https://doi.org/10.1007/s13201-015-0345-4.

Bergna, D., Hu, T., Prokkola, H., Romar, H. and Lassi, U. (2020) ‘Effect of some process parameters on the main properties of activated carbon produced from peat in a lab-scale process’, Waste and Biomass Valorization, 11(6), pp. 2837–2848. Available at: https://doi.org/10.1007/s12649-019-00584-2.

Bhainsa, K.C. and D’Souza, S.F. (2009) ‘Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass’, Journal of Hazardous Materials, 165(1–3), pp. 670–676. Available at: https://doi.org/10.1016/j.jhazmat.2008.10.033.

Burakov, A.E., Galunin, E. V., Burakova, I. V., Kucherova, A.E., Agarwal, S., Tkachev, A.G. and Gupta, V.K. (2018) ‘Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review’, Ecotoxicology and Environmental Safety, 148, pp. 702–712. Available at: https://doi.org/10.1016/j.ecoenv.2017.11.034.

Cánovas, C.R., Macías, F., Basallote, M.D., Olías, M., Nieto, J.M. and Pérez-López, R. (2021) ‘Metal(loid) release from sulfide-rich wastes to the environment: The case of the Iberian Pyrite Belt (SW Spain)’, Current Opinion in Environmental Science & Health, 20, p. 100240. Available at: https://doi.org/10.1016/j.coesh.2021.100240.

Chai, W.S., Cheun, J.Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H. and Show, P.L. (2021) ‘A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application’, Journal of Cleaner Production, 296, p. 126589. Available at: https://doi.org/10.1016/j.jclepro.2021.126589.

Chen, J. (2022) ‘Coordination of flotation reagents with metal ions on mineral surfaces’, in Coordination Principle of Minerals Flotation. Singapore: Springer Nature Singapore, pp. 117–158. Available at: https://doi.org/10.1007/978-981-19-2711-9_4.

Choi, H.-J. and Lee, S.-M. (2015) ‘Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system’, Environmental Science and Pollution Research, 22(17), pp. 13404–13411. Available at: https://doi.org/10.1007/s11356-015-4623-3.

Chugh, M., Kumar, L., Shah, M.P. and Bharadvaja, N. (2022) ‘Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities’, Energy Nexus, 7, p. 100129. Available at: https://doi.org/10.1016/j.nexus.2022.100129.

Coelho, G.F., Gonçalves Jr., A.C., Tarley, C.R.T., Casarin, J., Nacke, H. and Francziskowski, M.A. (2014) ‘Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L’, Ecological Engineering, 73, pp. 514–525. Available at: https://doi.org/10.1016/j.ecoleng.2014.09.103.

Daful, A.G. and Chandraratne, M.R. (2020) ‘Biochar Production From Biomass Waste-Derived Material’, in Encyclopedia of Renewable and Sustainable Materials. Elsevier, pp. 370–378. Available at: https://doi.org/10.1016/B978-0-12-803581-8.11249-4.

Dhankhar, R. and Hooda, A. (2011) ‘Fungal biosorption – An alternative to meet the challenges of heavy metal pollution in aqueous solutions’, Environmental Technology, 32(5), pp. 467–491. Available at: https://doi.org/10.1080/09593330.2011.572922.

Ferreira, R.A., Pereira, M.F., Magalhães, J.P., Maurício, A.M., Caçador, I. and Martins-Dias, S. (2021) ‘Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach’, Science of The Total Environment, 755, p. 142825. Available at: https://doi.org/10.1016/j.scitotenv.2020.142825.

Gammons, C.H., Edinberg, S.C., Parker, S.R. and Ogawa, Y. (2021) ‘Geochemistry of natural acid rock drainage in the Judith Mountains, Montana, part 2: Seasonal and spatial trends in Chicago Gulch’, Applied Geochemistry, 129, p. 104968. Available at: https://doi.org/10.1016/j.apgeochem.2021.104968.

García-Valero, A., Martínez-Martínez, S., Faz, A., Rivera, J. and Acosta, J.A. (2020) ‘Environmentally sustainable acid mine drainage remediation: Use of natural alkaline material’, Journal of Water Process Engineering, 33, p. 101064. Available at:

https://doi.org/10.1016/j.jwpe.2019.101064.

Ghorbel-Abid, I. and Trabelsi-Ayadi, M. (2015) ‘Competitive adsorption of heavy metals on local landfill clay’, Arabian Journal of Chemistry, 8(1), pp. 25–31. Available at: https://doi.org/10.1016/j.arabjc.2011.02.030.

Guerrero, J.L., Gutiérrez-Álvarez, I., Hierro, A., Pérez-Moreno, S.M., Olías, M. and Bolívar, J.P. (2021) ‘Seasonal evolution of natural radionuclides in two rivers affected by acid mine drainage and phosphogypsum pollution’, CATENA, 197, p. 104978. Available at: https://doi.org/10.1016/j.catena.2020.104978.

Harripersadth, C., Musonge, P., Makarfi Isa, Y., Morales, M.G. and Sayago, A. (2020) ‘The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions’, South African Journal of Chemical Engineering, 34, pp. 142–150. Available at: https://doi.org/10.1016/j.sajce.2020.08.002.

Hu, X., Peng, M., Sheng, X., Shi, H., Zhang, J., Liu, J., Yang, L., Shao, P., Luo, X., Hong, M. and Liu, T. (2022) ‘Continuous and effective treatment of heavy metal in acid mine drainage based on reducing barrier system: A case study in North China’, Journal of Hazardous Materials Advances, 8, p. 100152. Available at: https://doi.org/10.1016/j.hazadv.2022.100152.

Hurtado, C., Viedma, P. and Cotoras, D. (2018) ‘Design of a bioprocess for metal and sulfate removal from acid mine drainage’, Hydrometallurgy, 180, pp. 72–77. Available at: https://doi.org/10.1016/j.hydromet.2018.07.006.

Johnson, D.B. and Hallberg, K.B. (2005) ‘Acid mine drainage remediation options: a review’, Science of The Total Environment, 338(1–2), pp. 3–14. Available at: https://doi.org/10.1016/j.scitotenv.2004.09.002.

Kaur, G., Couperthwaite, S.J. and Millar, G.J. (2018) ‘Performance of bauxite refinery residues for treating acid mine drainage’, Journal of Water Process Engineering, 26, pp. 28–37. Available at: https://doi.org/10.1016/j.jwpe.2018.09.005.

Kiiskila, J.D., Sarkar, D., Panja, S., Sahi, S. V. and Datta, R. (2019) ‘Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): A multiscale long-term study’, Ecological Engineering, 129, pp. 97–108. Available at: https://doi.org/10.1016/j.ecoleng.2019.01.018.

Kim, E.-J., Lee, C.-S., Chang, Y.-Y. and Chang, Y.-S. (2013) ‘Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems’, ACS Applied Materials & Interfaces, 5(19), pp. 9628–9634. Available at: https://doi.org/10.1021/am402615m.

Kumar, M., Borah, P. and Devi, P. (2020) ‘Priority and emerging pollutants in water’, in Inorganic Pollutants in Water. Elsevier, pp. 33–49. Available at: https://doi.org/10.1016/B978-0-12-818965-8.00003-2.

Kumar, R., Bishnoi, N.R., Garima and Bishnoi, K. (2008) ‘Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass’, Chemical Engineering Journal, 135(3), pp. 202–208. Available at: https://doi.org/10.1016/j.cej.2007.03.004.

Lakherwal, D. (2014) ‘Adsorption of heavy metals: A Review’, International Journal of Environmental Research and Development, 4(1), pp. 41–48.

León-Venegas, E., Vilches-Arenas, L.F., Fernández-Baco, C. and Arroyo-Torralvo, F. (2023) ‘Potential for water and metal recovery from acid mine drainage by combining hybrid membrane processes with selective metal precipitation’, Resources, Conservation and Recycling, 188, p. 106629. Available at: https://doi.org/10.1016/j.resconrec.2022.106629.

Li, D.-C. and Jiang, H. (2017) ‘The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation’, Bioresource Technology, 246, pp. 57–68. Available at: https://doi.org/10.1016/j.biortech.2017.07.029.

Lin, T.-Y., Chai, W.S., Chen, S.-J., Shih, J.-Y., Koyande, A.K., Liu, B.-L. and Chang, Y.-K. (2021) ‘Removal of soluble microbial products and dyes using heavy metal wastes decorated on eggshell’, Chemosphere, 270, p. 128615. Available at: https://doi.org/10.1016/j.chemosphere.2020.128615.

Liu, X., Chen, G.-R., Lee, D.-J., Kawamoto, T., Tanaka, H., Chen, M.-L. and Luo, Y.-K. (2014) ‘Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents’, Bioresource Technology, 160, pp. 142–149. Available at: https://doi.org/10.1016/j.biortech.2014.01.012.

Luo, C., Routh, J., Dario, M., Sarkar, S., Wei, L., Luo, D. and Liu, Y. (2020) ‘Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study’, Science of The Total Environment, 724, p. 138122. Available at: https://doi.org/10.1016/j.scitotenv.2020.138122.

Mafra, C., Bouzahzah, H., Stamenov, L. and Gaydardzhiev, S. (2020) ‘Insights on the effect of pyrite liberation degree upon the acid mine drainage potential of sulfide flotation tailings’, Applied Geochemistry, 123, p. 104774. Available at: https://doi.org/10.1016/j.apgeochem.2020.104774.

Menzel, K., Barros, L., García, A., Ruby-Figueroa, R. and Estay, H. (2021) ‘Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage’, Separation and Purification Technology, 270, p. 118721. Available at: https://doi.org/10.1016/j.seppur.2021.118721.

Migaszewski, Z.M., Gałuszka, A. and Dołęgowska, S. (2019) ‘Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland)’, Environmental Pollution, 244, pp. 898–906. Available at: https://doi.org/10.1016/j.envpol.2018.10.106.

Mohan, D., Sarswat, A., Ok, Y.S. and Pittman, C.U. (2014) ‘Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review’, Bioresource Technology, 160, pp. 191–202. Available at: https://doi.org/10.1016/j.biortech.2014.01.120.

Moraes, M.L.B. de and Ladeira, A.C.Q. (2021) ‘The role of iron in the rare earth elements and uranium scavenging by Fe–Al-precipitates in acid mine drainage’, Chemosphere, 277, p. 130131. Available at: https://doi.org/10.1016/j.chemosphere.2021.130131.

Motsi, T., Rowson, N.A. and Simmons, M.J.H. (2009) ‘Adsorption of heavy metals from acid mine drainage by natural zeolite’, International Journal of Mineral Processing, 92(1–2), pp. 42–48. Available at: https://doi.org/10.1016/j.minpro.2009.02.005.

Mulyono, E. (2007) Teknologi pengolahan mete. Bogor: Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian.

Myagkaya, I.N., Lazareva, E.V., Zaikovskii, V.I. and Zhmodik, S.M. (2020) ‘Interaction of natural organic matter with acid mine drainage: Authigenic mineralization (case study of Ursk sulfide tailings, Kemerovo region, Russia)’, Journal of Geochemical Exploration, 211, p. 106456. Available at: https://doi.org/10.1016/j.gexplo.2019.106456.

Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. and Lobo-Recio, M.Á. (2019) ‘Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies’, Journal of Environmental Chemical Engineering, 7(1), p. 102787. Available at: https://doi.org/10.1016/j.jece.2018.11.032.

Ojonimi, T.I., Asuke, F., Onimisi, M.A. and Onuh, C.Y. (2019) ‘Acid mine drainage (AMD): An environmental concern generated by coal mining’, Journal of Degraded and Mining Lands Management, 6(4), pp. 1875–1881. Available at: https://doi.org/10.15243/jdmlm.2019.064.1875.

Park, I., Tabelin, C.B., Jeon, S., Li, X., Seno, K., Ito, M. and Hiroyoshi, N. (2019) ‘A review of recent strategies for acid mine drainage prevention and mine tailings recycling’, Chemosphere, 219, pp. 588–606. Available at: https://doi.org/10.1016/j.chemosphere.2018.11.053.

Pei, H., Wang, C., Wang, Y., Yang, H. and Xie, S. (2019) ‘Distribution of microbial lipids at an acid mine drainage site in China: Insights into microbial adaptation to extremely low pH conditions’, Organic Geochemistry, 134, pp. 77–91. Available at: https://doi.org/10.1016/j.orggeochem.2019.05.008.

Pettinato, M., Chakraborty, S., Arafat, H.A. and Calabro’, V. (2015) ‘Eggshell: A green adsorbent for heavy metal removal in an MBR system’, Ecotoxicology and Environmental Safety, 121, pp. 57–62. Available at: https://doi.org/10.1016/j.ecoenv.2015.05.046.

Qu, D. (2002) ‘Studies of the activated carbons used in double-layer supercapacitors’, Journal of Power Sources, 109(2), pp. 403–411. Available at: https://doi.org/10.1016/S0378-7753(02)00108-8.

Rahaman, M.S., Rahman, M.M., Mise, N., Sikder, M.T., Ichihara, G., Uddin, M.K., Kurasaki, M. and Ichihara, S. (2021) ‘Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management’, Environmental Pollution, 289, p. 117940. Available at: https://doi.org/10.1016/j.envpol.2021.117940.

Rosanti, D., Wibowo, Y.G., Safri, M., Maryani, A.T. and Ramadhan, B.S. (2020) ‘Bioremediations technologies on wastewater treatment: Opportunities, challenges and economic perspective’, Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 17(2), pp. 142–156. Available at: https://doi.org/10.31851/sainmatika.v17i2.5085.

Rozman, U., Kalčíková, G., Marolt, G., Skalar, T. and Žgajnar Gotvajn, A. (2020) ‘Potential of waste fungal biomass for lead and cadmium removal: Characterization, biosorption kinetic and isotherm studies’, Environmental Technology & Innovation, 18, p. 100742. Available at: https://doi.org/10.1016/j.eti.2020.100742.

Ruehl, M.D. and Hiibel, S.R. (2020) ‘Evaluation of organic carbon and microbial inoculum for bioremediation of acid mine drainage’, Minerals Engineering, 157, p. 106554. Available at: https://doi.org/10.1016/j.mineng.2020.106554.

Said, N.I. (2018) ‘Teknologi pengolahan air asam tambang batubara “Alternatif pemilihan teknologi”’, Jurnal Air Indonesia, 7(2), pp. 119–138. Available at: https://doi.org/10.29122/jai.v7i2.2411.

Sankaran, R., Show, P.L., Ooi, C.-W., Ling, T.C., Shu-Jen, C., Chen, S.-Y. and Chang, Y.-K. (2020) ‘Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes’, Clean Technologies and Environmental Policy, 22(4), pp. 773–786. Available at: https://doi.org/10.1007/s10098-019-01792-z.

Seo, E.Y., Cheong, Y.W., Yim, G.J., Min, K.W. and Geroni, J.N. (2017) ‘Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH’, CATENA, 148, pp. 11–16. Available at: https://doi.org/10.1016/j.catena.2016.07.022.

Sephton, M.G., Webb, J.A. and McKnight, S. (2019) ‘Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks’, Applied Geochemistry, 103, pp. 1–14. Available at: https://doi.org/10.1016/j.apgeochem.2019.02.005.

Simate, G.S. and Ndlovu, S. (2014) ‘Acid mine drainage: Challenges and opportunities’, Journal of Environmental Chemical Engineering, 2(3), pp. 1785–1803. Available at: https://doi.org/10.1016/j.jece.2014.07.021.

Sounthararajah, D.P., Loganathan, P., Kandasamy, J. and Vigneswaran, S. (2015) ‘Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns’, Journal of Hazardous Materials, 287, pp. 306–316. Available at: https://doi.org/10.1016/j.jhazmat.2015.01.067.

Taher, T., Munandar, A., Mawaddah, N., Syamsuddin Wisnubroto, M., Siregar, P.M.S.B.N., Palapa, N.R., Lesbani, A. and Wibowo, Y.G. (2023) ‘Synthesis and characterization of montmorillonite – Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal’, Inorganic Chemistry Communications, 147, p. 110231. Available at: https://doi.org/10.1016/j.inoche.2022.110231.

Tan, X., Zhu, S., Show, P.L., Qi, H. and Ho, S.-H. (2020) ‘Sorption of ionized dyes on high-salinity microalgal residue derived biochar: Electron acceptor-donor and metal-organic bridging mechanisms’, Journal of Hazardous Materials, 393, p. 122435. Available at:

https://doi.org/10.1016/j.jhazmat.2020.122435.

Tangjuank, S., Insuk, N., Tontrakoon, J. and Udeye, V. (2009) ‘Adsorption of lead(II) and cadmium(II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells’, International Journal of Chemical and Molecular Engineering, 3(4), pp. 221–227.

Tseng, R.-L., Tseng, S.-K. and Wu, F.-C. (2006) ‘Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1–3), pp. 69–78. Available at: https://doi.org/10.1016/j.colsurfa.2005.12.042.

Utami, U.B.L., Susanto, H. and Cahyono, B. (2020) ‘Neutralization acid mine drainage (AMD) using NaOH at PT. Jorong Barutama Grestone, Tanah Laut, South Borneo’, IJCA (Indonesian Journal of Chemical Analysis), 3(1), pp. 17–21. Available at: https://doi.org/10.20885/ijca.vol3.iss1.art3.

Vélez-Pérez, L.S., Ramirez-Nava, J., Hernández-Flores, G., Talavera-Mendoza, O., Escamilla-Alvarado, C., Poggi-Varaldo, H.M., Solorza-Feria, O. and López-Díaz, J.A. (2020) ‘Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells’, International Journal of Hydrogen Energy, 45(26), pp. 13757–13766. Available at: https://doi.org/10.1016/j.ijhydene.2019.12.037.

Wahyudin, I., Widodo, S. and Nurwaskito, A. (2018) ‘Analisis penanganan air asam tambang batubara’, Jurnal Geomine, 6(2), pp. 85–89. Available at: https://doi.org/10.33536/jg.v6i2.214.

Wang, J. and Wang, S. (2019) ‘Preparation, modification and environmental application of biochar: A review’, Journal of Cleaner Production, 227, pp. 1002–1022. Available at: https://doi.org/10.1016/j.jclepro.2019.04.282.

Wati, M., Hadiyansyah, D., Sabri, A., Studi, P., Pertambangan, T., Tinggi, S., Industri, T., Tanah, K.A. and Air, S.M. (2003) Analisis pengaruh air asam tambang terhadap kualitas air tanah di lingkungan sekitar area penambangan Cv Tahiti Coal Desa. Sekolah Tinggi Teknologi Padang.

Weber, K. and Quicker, P. (2018) ‘Properties of biochar’, Fuel, 217, pp. 240–261. Available at: https://doi.org/10.1016/j.fuel.2017.12.054.

White, S.J.O., Hussain, F.A., Hemond, H.F., Sacco, S.A., Shine, J.P., Runkel, R.L., Walton-Day, K. and Kimball, B.A. (2017) ‘The precipitation of indium at elevated pH in a stream influenced by acid mine drainage’, Science of The Total Environment, 574, pp. 1484–1491. Available at: https://doi.org/10.1016/j.scitotenv.2016.08.136.

Wibowo, Y.G., Nugraha, A.T. and Rohman, A. (2023) ‘Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia’, Environmental Nanotechnology, Monitoring & Management, 20, p. 100781. Available at: https://doi.org/10.1016/j.enmm.2023.100781.

Wibowo, Y.G., Safitri, H., Malik, I.B.I., Sudibyo and Priyanto, S. (2022) ‘Alternative low-cost treatment for real acid mine drainage: Performance, bioaccumulation, translocation, economic, post-harvest, and bibliometric analyses’, Sustainability, 14(22), p. 15404. Available at: https://doi.org/10.3390/su142215404.

Wibowo, Y.G., Safitri, H., Ramadan, B.S. and Sudibyo (2022) ‘Adsorption test using ultra-fine materials on heavy metals removal’, Bioresource Technology Reports, 19, p. 101149. Available at: https://doi.org/10.1016/j.biteb.2022.101149.

Wibowo, Y.G., Sudibyo, Naswir, M. and Ramadan, B.S. (2022) ‘Performance of a novel biochar-clamshell composite for real acid mine drainage treatment’, Bioresource Technology Reports, 17, p. 100993. Available at: https://doi.org/10.1016/j.biteb.2022.100993.

Wibowo, Y.G., Taher, T., Khairurrijal, K., Ramadan, B.S., Safitri, H., Sudibyo, S., Yuliansyah, A.T. and Petrus, H.T.B.M. (2024) ‘Recent advances in the adsorptive removal of heavy metals from acid mine drainage by conventional and novel materials: A review’, Bioresource Technology Reports, 25, p. 101797. Available at: https://doi.org/10.1016/j.biteb.2024.101797.

Wibowo, Y.G., Wijaya, Candra, Halomoan, P., Yudhoyono, A. and Safri, M. (2022) ‘Constructed wetlands for treatment of acid mine drainage: A review’, Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 19(2), pp. 436–450. Available at: https://doi.org/10.14710/presipitasi.v19i2.436-450.

Widyati, E., Widyastuti, R. and Lantifasari, R. (2010) ‘Sidik cepat biokatalisasi air asam tambang pada lahan bekas tambang batubara’, Jurnal Penelitian Hutan Tanaman, 7(1), pp. 51–58. Available at: https://doi.org/10.20886/jpht.2010.7.1.51-58.

Wijaya, A.R.E. (2010) ‘Sistem pengolahan air asam tambang pada water pond dan aplikasi model encapsulation in-pit disposal pada waste dump tambang batubara’, Jurnal Manusia dan Lingkungan, 17(1), pp. 1–10.

Yang, J., Wei, W., Pi, S., Ma, F., Li, A., Wu, D. and Xing, J. (2015) ‘Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1’, Bioresource Technology, 196, pp. 533–539. Available at: https://doi.org/10.1016/j.biortech.2015.08.011.

Yilmaz, T., Yucel, A., Cakmak, Y., Uyanik, S., Yurtsever, A. and Ucar, D. (2019) ‘Treatment of acidic mine drainage in up-flow sulfidogenic reactor: Metal recovery and the pH neutralization’, Journal of Water Process Engineering, 32, p. 100916. Available at: https://doi.org/10.1016/j.jwpe.2019.100916.

Zhang, H., Yuan, X., Xiong, T., Wang, H. and Jiang, L. (2020) ‘Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods’, Chemical Engineering Journal, 398, p. 125657. Available at: https://doi.org/10.1016/j.cej.2020.125657.

Zhang, T., Tu, Z., Lu, G., Duan, X., Yi, X., Guo, C. and Dang, Z. (2017) ‘Removal of heavy metals from acid mine drainage using chicken eggshells in column mode’, Journal of Environmental Management, 188, pp. 1–8. Available at: https://doi.org/10.1016/j.jenvman.2016.11.076.

Zwain, H.M., Vakili, M. and Dahlan, I. (2014) ‘Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review’, International Journal of Chemical Engineering, 2014, pp. 1–13. Available at: https://doi.org/10.1155/2014/347912.

Downloads

Published

2024-04-25

Most read articles by the same author(s)