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ABSTRACT 
 
In recent decades, generation of ground vibrations results from blasting activities in mining sector has 
been identified as a significant cause of extensive harm to nearby structures, vegetation, and individuals. 
Hence, it is imperative to closely monitor and accurately forecast the uncertain levels of vibration, and 
implement the appropriate steps to mitigate their potentially harmful impact. The objective of this study 
was to establish a correlation between the peak particle velocity and the various parameters that 
influence it. This study employed the deployment of the artificial neural network approach to assess and 
forecast the uncertain ground vibrations. In this study, a multilayer perception neural network with three 
layers and a feed-forward back-propagation architecture was employed. The network consisted of five 
input parameters, namely the distance from the blast face, maximum charge per delay, spacing, burden, 
and depth hole. The output of interest was the peak particle velocity. The neural network was trained 
using the Levenberg–Marquardt algorithm, and the training dataset comprised 29 experimental records 
and blast event data obtained from the limestone mine in Indonesia. In order to assess the effectiveness 
and the precision of the artificial neural network model that was created, a total of four conventional 
predictor models were utilized. These models were proposed by reputable sources such as the US 
Bureau of Mines, Ambraseys–Hendron, Langefors–Kihlstrom, and the Bureau of Indian Standards. The 
results collected from the demonstrate study show that the artificial neural network model suggested in 
this research has the ability to provide more precise estimations of ground vibrations in comparison to 
existing conventional prediction models. The artificial neural network model yielded a coefficient of 
determination (R2) of 0.9332 and a root mean square error (RMSE) of 0.4763. 

Keywords: peak particle velocity, blast-induced ground vibration, artificial neural network, conventional 
predictors. 

 

ABSTRAK 
 
Dalam beberapa dekade terakhir, getaran tanah yang dihasilkan dari aktivitas peledakan pada sektor 
pertambangan telah teridentifikasi sebagai penyebab kerusakan struktur tanah, vegetasi, dan 
masyarakat sekitar. Oleh karena itu, perlu adanya pemantauan getaran secara akurat untuk 
memperkirakan tingkat getaran, dan menerapkan langkah-langkah yang tepat untuk mengurangi 
dampak kerusakan akibat getaran peledakan. Tujuan penelitian ini adalah memprediksi peak particle 
velocity (PPV) dan berbagai parameter yang mempengaruhinya. Penelitian ini menggunakan 
pendekatan jaringan syaraf tiruan untuk menilai dan meramalkan getaran tanah yang tidak menentu. 
Dalam penelitian ini, jaringan saraf persepsi multilayer dengan tiga lapisan dan arsitektur feed-forward  

https://doi.org/10.30556/imj.Vol27.No1.2024.1531
http://creativecommons.org/licenses/by-nc/4.0/
mailto:rizqi@itny.ac.id


INDONESIAN MINING JOURNAL  Vol. 27, No. 1, April 2024 : 1 - 9 

2 
 
 

back-propagation digunakan. Jaringan ini terdiri dari lima parameter input, yaitu jarak permukaan 
ledakan, muatan maksimum per penundaan, spasi, burden, dan kedalaman lubang. Keluaran yang 
diinginkan adalah kecepatan partikel puncak. Jaringan syaraf tiruan dilatih menggunakan algoritma 
Levenberg-Marquardt, dan kumpulan data pelatihan terdiri dari 29 aktivitas peledakan dan data kejadian 
ledakan yang diperoleh dari tambang batugamping di Indonesia. Untuk menilai efektivitas dan ketepatan 
model jaringan syaraf tiruan yang telah dibuat, sebanyak empat model prediktor konvensional digunakan 
sebagai pembanding. Model prediksi tersebut adalah US Bureau of Mines, Ambraseys–Hendron, 
Langefors–Kihlstrom, dan Bureau of Indian Standards. Hasil yang diperoleh dari penelitian ini 
menunjukkan bahwa model jaringan syaraf tiruan memiliki kemampuan untuk memberikan estimasi peak 
particle velocity (PPV) yang lebih akurat dibandingkan dengan model prediksi konvensional yang sudah 
ada. Model jaringan syaraf tiruan menghasilkan koefisien determinasi (R2) sebesar 0,9971 dan root 
mean square error (RMSE) sebesar 0,08133. 

Kata kunci: peak particle velocity, getaran tanah, artificial neural network, model prediksi konvensional. 

 
 
INTRODUCTION 

 
Mineral exploitation in the framework of 
infrastructure development in Indonesia 
tends to increase. Drilling and blasting is one 
of the exploitation efforts that have economic 
value in excavating rock masses. Until 
recently, explosives were a valuable source 
of energy required for the breaking, 
excavation and displacement of rock masses. 
Explosives detonate in the blast hole, 
releasing a large amount of energy, when 
converted to a pressure of up to 50 GPa and 
a temperature of up to 5000 K released 
(Chen and Huang, 2001; Hajihassani, Jahed 
Armaghani, Marto, et al., 2015). Although 
there have been significant developments in 
explosives technology, the utilization of 
explosives energy has not progressed much 
due to the complexity of various rock 
parameters (Armaghani et al., 2014). In 
blasting, only about 20% -30% of the energy 
used is used for breaking and moving rock 
masses, the rest of the energy is lost to 
ground vibrations, fly rocks, noises, back 
breaks, over breaks, and so on. Several 
variations of vibration parameters to predict 
and reduce the effects of blasting have been 
carried out. The vibration parameters are 
displacement, velocity and acceleration 
(Khandelwal and Singh, 2009; Dindarloo, 
2015). When these explosives are used, 
people living around the mining area get 
disturbed. It is possible because of the high 
level ground vibrations, their homes can be 
damaged and there is always a confrontation 
between the mine manager and the 
community around the mine area  (Ram 
Chandar, Sastry and Hegde, 2017). 
Problems High ground vibrations not only 
cause problems for the people in the vicinity, 
but also have a negative impact on structures 
in the mining area. These problems can 

provoke residents and close the mine. High-
intensity vibrations also damage and clog the 
existing groundwater channels and damage 
the ecology of the surrounding area. If ground 
shaking is not controlled or minimized, it may 
become one of the main causes of 
deforestation in the future (Ragam and 
Devidas S. Nimaje, 2018). Ground vibration 
is influenced by several parameters such as 
the physico-mechanical properties of the rock 
mass, blast characteristics and blast design 
(Priyadarshi et al., 2023). The influence of 
these parameters is very important to know 
as an effort to efficiently utilize explosive 
energy and minimize unwanted effects of 
explosions. Design parameters such as 
maximum payload per delay, delay time, 
load, distance, payload length, initiation 
sequence and load decoupling, greatly 
change the seismic energy dispersion (Pal 
Roy, 2021). Therefore, it is necessary to 
optimize the design parameters of the blast 
and the characteristics of the explosives 
based on the rock mass properties, such as 
strength, density, porosity, longitudinal wave 
velocity, impedance, stress-strain response 
and the presence of structural discontinuities. 
Through these parameters, it is necessary to 
have a predictive method that provides safe 
peak particle velocity (PPV) values in the 
context of safe, smooth and environmentally 
friendly excavation of rock masses for mining 
and civil construction projects (Shirani 
Faradonbeh et al., 2016). One of these 
prediction methods is an Artificial Neural 
Network. By using the method artificial neural 
networks (ANN), PPV frequency can be 
predicted before the explosion and produces 
the highest significance value which is 99% 
or more accurate than conventional methods 
such as USBM, MLR etc. (Prashanth and 
Nimaje, 2018; Ragam and Devidas 
Sahebraoji Nimaje, 2018). The detonation 
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design can be modified in such a way that 
detonation disturbance can be minimized, 
efficient utilization of detonation energy will 
be achieved (Bakhshandeh Amnieh, Siamaki 
and Soltani, 2012; Bui et al., 2021; Bui, 
Nguyen and Nguyen, 2021). Several 
researchers have conducted investigations 
and put forth various conventional vibration 
predictors to predict PPV. These predictors 
are outlined and summarized in Table 1 
below. 
 
 
Table 1. The conventional formula used for 

predicting PPV 
 

Name Formula 

United State 
Bureau of Mines 
(Duvall and 
Petkof, 1959) 

PPV = K [
D

√Qmax

]

-B

 

Langefors– 
Kihlstrom  
(Langefors and 
Kihlstrom, 1963) 

PPV = K [√(
Qmax

D2 3⁄
)]

-B

 

Ambraseys– 
Hendron 
(Ambraseys and 
Hendron, 1968) 

PPV = K [
D

Qmax
1/3

]

-B

 

Bureau of Indian 
Standards 
(Indian Standard 
Institute (ISI), 
1973) 

PPV = K [√(
Qmax

D2 3⁄
)]

-B

 

 
 
The proposed conventional predictor 
equations can estimate the PPV based on two 
specific parameters: the distance between the 
blasting face and the monitoring point and the 
maximum charge per delay. While a few 
studies have overlooked the incorporation of 
attenuation/damping factor, it is essential to 
note that the PPV is influenced by several 
geological, geotechnical, blast geometry, and 
explosive properties (Armaghani et al., 2014). 
These aspects have yet to be accounted for in 
the current predictors. The impacted 
parameters, such as distance, maximum 
charge per delay, spacing, burden, etc., 
exhibit significant magnitudes and intricate 
interrelationships. Consequently, conventional 
predictor methods may not be appropriate in 
this context, and the existing predictors cannot 
forecast other significant parameters such as 
frequency, air noise, and flying rocks. 
 
The objective of this study was to utilize ANN 
for the purpose of forecasting ground 
vibrations resulting from blasting activities at 

the limestone mine in Gresik, Indonesia. The 
findings produced from the ANN were 
compared with those of four conventional 
vibration predictors. 
 
 
METHODOLOGY 
 
A selection was made of 29 explosion events 
that were recorded at various monitoring 
locations located in and around mine A, 
specifically within the distance ranges of 100 – 
200 m and 200 – 300 m. The PPV values were 
measured using the Blassmate III instrument, 
which has a measurement range of 0-254 
mm/s. The precision of the measurements is 
reported to be 0.5 mm/s. The device is 
equipped with a transducer that operates in 
three dimensions and a sensor for capturing 
sound from the surrounding air. These 
components are utilized to quantify PPV as 
well as airborne noise levels. The instrument 
should be securely attached to both the 
microphone and the geophone through the 
wires. It is imperative that it be situated in a 
location that ensures safety. The positive 
predictive values (PPVs) was influenced by 
several parameters, including the physico-
mechanical properties of the rock mass, 
explosive characteristics, and blast design. 
Table 2 presents the input parameters and 
their corresponding ranges, which have been 
derived from the field investigation and the 
blasting process (Figure 1). 
 
 

  
 

Figure 1. Blasting proses 

 
 
Table 1 is a compilation of standard vibration 
prediction equations proposed by a range of 
scholars, scientists, researchers, and field 
engineers. The equation for calculating PPV 
was established by the United States Bureau 
of Mines (USBM) as follows (Ataei and 
Sereshki, 2017): 
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PPV = K [√
D

Qmax
]
-B

 or PPV = K
[SD]

-B 

 
Where PPV is the Peak Particle Velocity, SD 
is the scaled distance, and K and B are the 
site constants. The site constants K and B 
were determined by plotting graph between 
PPV and different scaled distance (SD) 
(Tarumasely, Wardana and Prastowo, 2024). 
The general equation of straight line is  
y = mx + C 
 
This implies that the PPV and SD data should 
demonstrate a linear relationship when 
plotted on a logarithmic scale graph paper. 
Consequently, y = PPV, x = SD, intercept C = 
k, and slope −B = m. 
 
ANNs have shown excellence in predicting 
blast-induced ground vibration due to their 
ability to capture complex nonlinear 
relationships between the input parameters 
and the output responses. The ANNs have 
been widely used in the field of rock 
mechanics and geotechnical engineering for 
ground vibration prediction with high 
accuracy. Several studies have 
demonstrated the effectiveness of ANNs in 
blast-induced ground vibration prediction. 
Various types of neural networks was applied 
to predict blast-induced ground vibration and 
found that the ANN models outperformed 
traditional empirical models (Monjezi et al., 
2010; Lawal and Kwon, 2021). Similarly, 
particle swarm optimization-based ANN 
approach achieved accurate predictions of 
blast-induced ground vibration (Hajihassani, 
Jahed Armaghani, Monjezi, et al., 2015). 
 
Furthermore, the ANNs have been combined 
with other optimization algorithms to enhance 
their performance. The ANN is optimized by 
the imperialist competitive algorithm to predict 
ground vibration in quarry blasting, and the 
results showed improved accuracy compared 
to the traditional methods (Hajihassani, Jahed 
Armaghani, Marto, et al., 2015; Das and 
Chakrabortty, 2021). 
 
The activation function is used as a 
determinant of the neuron output. One of the 
training methods in the ANN is supervised 
learning. The main goal of the artificial neural 
network (ANN) training procedure is to 
minimize the quantified error (Abd Elwahab, 
Topal and Jang, 2023; Taiwo et al., 2023). 

Prior to analyzing and drawing conclusions 
from newly obtained data, it is imperative to 
ensure that the neural network has 
undergone appropriate training. In this study, 
a back-propagation (BP) training algorithm 
that encompasses four distinct stages: weight 
initialization, feed-forward computation, error 
back-propagation, and weight and bias 
updating is examined (Wang et al., 2023).  
 
This study utilized a feed-forward back-
propagation neural network, and the ANN 
model was implemented using the Python3 
software. The analysis was conducted in two 
distinct stages, specifically served as training 
and validation. The data set, consists of 29 
samples, is partitioned into two distinct 
datasets, namely the training dataset and the 
validation dataset. The former consists of 24 
samples, while the later comprises the 
remaining 5 samples. 
 
The performances of several traditional 
predictor models were assessed using several 
common statistical performance evaluation 
criteria. The statistical measurements that are 
commonly employed include the coefficient of 
determination (R2), mean absolute deviation 
(MAD), mean squared error (MSE), mean 
absolute percentage error (MAPE), and root 
mean square error (RMSE) (Ragam and 
Devidas Sahebraoji Nimaje, 2018). 
 
 
RESULTS AND DISCUSSION 
 
The ANN model in mining has been carried 
out mainly on PPV prediction. Through the 
input parameters hole depth, spacing, 
burden, distance, Charge per delay, the PPV 
prediction using the ANN model, PPV 
predicted by ANN model is very close to the 
measured data. This study demonstrates a 
comparative analysis of the precision positive 
predictive values (PPVs) obtained from 
artificial neural networks (ANN) and various 
predictor equations (Figure 2). 
 
In the Artificial Neural Network method, this 
study chose the 5-10-1 Architecture model, 
seen in Table 3, and Iterations/epoch = 500 
times, while Programming uses Python3. The 
input parameters are distance, spacing, 
burden, hole depth, and charge per delay 
(Table 2). The architectural model is shown 
in Figure 3. 
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Figure 2. Predictor models' measured and forecasted PPVs 

 
 
Table 2. Parameter of monitoring in Limestone Mine 
 

No Parameter Symbol Unit Minimum Maksimum Mean Standar Deviation 

1 Spacing S m 3 5 3.90 0.54 
2 Burden B m 2 3 2.38 0.32 
3 Hole Depth HD m 3.5 8 6.01 0.65 
4 Distance D m 404 943 588.58 115.19 
5 Charge per Delay Q kg 427.2 8287.2 2918.46 2157.32 
6 Peak Particle Velocity PPV mm/s 0.57 4.66 1.70 1.04 

 
 
Table 3. Characteristics of the ANN architecture 
 

Network type 
Feed-forward back-

propagation 
Number of neurons in 
the input layer 

5 

Number of neurons in 
the hidden layer 

10 

Number of neurons in 
the output layer 

1 

Number of layers 3 

 
 

 
 

Figure 3. ANN architecture 

 

The 500 iteration results show a significant 
reduction in error and the final loss result is 
0.2322. The iteration shows the number of 
repetitions of the train data so that it 
approaches the test data (Figure 4). 
 
 

 
 

Figure 4. Loss Model 
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Figure 5. (a) ANN predictor, (b) USBM predictor, (c) Langefors–Kihlstrom predictor, (d) Ambraseys–
Hendron predictor, (e) Bureau of Indian Standards predictor 

 
 
Table 4. Performance of developed statistical models 
 

No Model R2 MAD MSE RMSE MAPE 

1 ANN 0.9332 0.0915 0.2269 0.4763 0.1079 
2 USBM 0.5184 0.1517 0.6314 0.7946 0.2887 
3 Langefors–Kihlstrom 0.5271 0.1601 0.6403 0.8002 0.3104 
4 Ambraseys–Hendron 0.4937 0.1500 0.6410 0.8007 0.2814 
5 Bureau of Indian Standards 0.5453 0.1661 0.6703 0.8355 0.3304 

ANN: artificial neural network; USBM: US Bureau of Mines; MAD: mean absolute deviation; MSE: mean square error; 
RMSE: root mean square error; MAPE: mean absolute percentage error 

 
 

(a) (b) 

(e) 

(d) (c) 
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R2, MAD, MSE, MAPE, RMSE, and MAPE 
are summarized in Table 4 for ANN and 
numerous conventional vibration equations. 
Here, the Bureau of Indian Standards 
predictor yields the highest RMSE while the 
ANN yields the lowest. 
 
All conventional predictors have site-specific 
constants, making them incapable of 
predicting the safe charge for equivalent 
mining conditions in other locations. As the 
earth conditions changed, the site and 
attenuation constant values also varied. In 
addition, these are derived from just two 
parameters, namely the maximum charge per 
delay and the distance between the monitoring 
point and the explosion face. Based on a linear 
relationship between scaled distance 
(D/Qmax) and PPV, these empirical predictors 
are linear (Khandelwal and Singh, 2009). 
 
 
CONCLUSION AND SUGGESTION 
 
An assessment was conducted to evaluate the 
blast-induced ground vibration at limestone 
mine, specifically focusing on the peak particle 
velocities (PPV) associated with different blast 
occurrences. In this study, a set of four 
conventional vibration predictor equations and 
one by artificial neural network (ANN) 
predictor were utilized and suggested for the 
estimation PPV. In order to assess the 
precision of the constructed model, five 
performance indicators were utilized and 
determined. These indicators include R2, 
MAD, MSE, RMSE, and MAPE. The results 
obtained indicate that the ANN predictive 
model exhibits a substantial R2 value of 
0.9332, a low mean squared error (MSE) of 
0.2269, and a smaller root mean squared error 
(RMSE) of 0.4763. In addition, it yields 
improved predictive outcomes and 
demonstrates a satisfactory level of accuracy 
in comparing projected and measured positive 
predictive values (PPVs). 
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