THE EFFECT OF HYDROTHERMAL PROCESS ON INCREASING HEATING VALUE AND REDUCING MOISTURE CONTENT OF LOW-RANK COAL

Authors

  • Lenny Marlinda Jambi University https://orcid.org/0000-0001-6961-3815
  • Xena Maharani Pane University of Jambi
  • Jarot Wiratama University of Jambi
  • Wahyudi Zahar University of Jambi
  • Muhammad Reza Khadafi University of Jambi
  • Rahmi University of Jambi

DOI:

https://doi.org/10.30556/imj.Vol28.No1.2025.1539

Keywords:

hydrothermal, low-rank coal, calorific value, water content

Abstract

As a low-rank coal, brown coal is characterized to have high water content. It is required a method to improve coal quality that can be used for effective coal utilization. One of the methods is to apply thermal dewatering technology which focuses on improving the quality of low-rank coal using water medium and autoclave. The purpose of this study was to determine the effect of coal to water ratio (w/v) and the effect of particle size of a low rank-coal on water content and calorific value using the hydrothermal method. Coal was processed under hydrothermal conditions at 150 °C for 60 min. For a mixture of 100 g of 25 mesh coal and 50 mL of water, the calorific value and water content after the hydrothermal process reached 5,849 kcal/kg and 5.10% (adb), respectively. While for a mixture of 100 g of 40 mesh coal and 50 mL of water, the calorific value and water content after the hydrothermal process reached 5,789 kcal/kg and 4.94% (adb), respectively. The calorific value obtained increased from the initial value of 3,296 kcal/kg and the water content decreased from the initial value of 44.34% for the coal condition before hydrothermal process. It can be concluded that the hydrothermal process with heating without oxygen carried out by a hydrothermal reactor could increase the calorific value of low-rank coal and reduce water content.

Author Biographies

Lenny Marlinda, Jambi University

Department of Industrial Chemistry

Xena Maharani Pane, University of Jambi

Department of Chemical Engineering

Jarot Wiratama, University of Jambi

Department of Mining Engineering

Wahyudi Zahar, University of Jambi

Department of Mining Engineering

Muhammad Reza Khadafi, University of Jambi

Department of Mining Engineering

Rahmi, University of Jambi

Department of Chemistry

References

Adi, A.C. (2024) Menteri ESDM Tekankan Hilirisasi Batubara dalam Transisi Energi, www.esdm.go.id. Available at: https://www.esdm.go.id/id/media-center/arsip-berita/menteri-esdm-tekankan-hilirisasi-batubara-dalam-transisi-energi (Accessed: 22 January 2025).

Arinaldo, D. and Adiatma, J.C. (2019) Indonesia’s Coal Dynamics: Toward A Just Energy Transition. 1st edn, Institute for Essential Services Reform (IESR) Jakarta, Indonesia First Edition. 1st edn. Edited by F. Tumiwa. Jakarta: Institute for Essential Services Reform.

Azizi, M. A., Ghifari, M.K. (2020) ‘Parameter Kualitas & Basis Pelaporan Batubara’, Lokakarya Pertambangan Batubara Terhadap Pegawai Direktorat Pajak [Preprint]. Jakarta: Kementerian Keuangan Republik Indonesia.

Ge, L., Feng, H., Xu, C., Zhang, Y. and Wang, Z. (2018) ‘Effect of hydrothermal dewatering on the pyrolysis characteristics of Chinese low-rank coals’, Applied Thermal Engineering, 141, pp. 70–78. Available at: https://doi.org/10.1016/j.applthermaleng.2018.05.098.

Ge, L., Zhang, Y., Xu, C., Wang, Z., Zhou, J. and Cen, K. (2015) ‘Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals’, Applied Thermal Engineering, 90, pp. 174–181. Available at: https://doi.org/10.1016/j.applthermaleng.2015.07.015.

Huda, M., Salinita, S. and Ningrum, N.S. (2017) ‘Perubahan komposisi maseral dalam batubara Wahau setelah proses pengeringan/upgrading’, Jurnal Teknologi Mineral dan Batubara, 13(3), pp. 225–235. Available at: https://doi.org/10.30556/jtmb.Vol13.No3.2017.173.

Ifa, L., Firdaus, Faisal and Sarmanto, D. (2019) ‘Pengaruh ukuran partikel pada moisture batubara jenis kow rank coal’, Jurnal Geomine, 7(2), pp. 87 – 91.

Katalambula, H. and Gupta, R. (2009) ‘Low-grade coals: A review of some prospective upgrading technologies †’, Energy & Fuels, 23(7), pp. 3392–3405. Available at: https://doi.org/10.1021/ef801140t.

Liu, J., Wu, J., Zhu, J., Wang, Z., Zhou, J. and Cen, K. (2016) ‘Removal of oxygen functional groups in lignite by hydrothermal dewatering: An experimental and DFT study’, Fuel, 178, pp. 85–92. Available at: https://doi.org/10.1016/j.fuel.2016.03.045.

Liu, S., Zhao, H., Zhou, J., Fan, T., Yang, J., Li, G., Wang, Y. and Zeng, M. (2021) ‘The effect of hydrothermal treatment on structure and flotation characteristics of lignite and a mechanistic analysis’, ACS Omega, 6(3), pp. 1930–1940. Available at: https://doi.org/10.1021/acsomega.0c04713.

Liu, S., Zhou, Q., Li, G., Feng, L., Zhang, Q., Weng, X., Zhang, J. and Ma, Z. (2022) ‘Removal of O-containing functional groups during hydrothermal treatment dewatering: A combined experimental and theoretical theory study’, Fuel, 326, p. 124971. Available at: https://doi.org/10.1016/j.fuel.2022.124971.

Murray, J.B. and Evans, D.G. (1972) ‘The brown-coal/water system: Part 3. Thermal dewatering of brown coal’, Fuel, 51(4), pp. 290–296. Available at: https://doi.org/10.1016/0016-2361(72)90006-3.

Mursito, A.T., Hirajima, T. and Sasaki, K. (2010) ‘Upgrading and dewatering of raw tropical peat by hydrothermal treatment’, Fuel, 89(3), pp. 635–641. Available at: https://doi.org/10.1016/j.fuel.2009.07.004.

Mursito, A.T., Hirajima, T. and Sasaki, K. (2011) ‘Alkaline hydrothermal de-ashing and desulfurization of low quality coal and its application to hydrogen-rich gas generation’, Energy Conversion and Management, 52(1), pp. 762–769. Available at: https://doi.org/10.1016/j.enconman.2010.08.001.

Mursito, A.T., Hirajima, T., Sasaki, K. and Kumagai, S. (2010) ‘The effect of hydrothermal dewatering of Pontianak tropical peat on organics in wastewater and gaseous products’, Fuel, 89(12), pp. 3934–3942. Available at: https://doi.org/10.1016/j.fuel.2010.06.035.

van Raam, L., Ruyter, H.P. and van Breugel, J.W. (1981) ‘Dewatering and Upgrading Low Rank Coal by a Two-step hydrothermal treatment’. United States. Available at: https://patents.google.com/patent/US4285140.

Sa’ban, Y.F., Marlinda, L., Alfernando, O., Zahar, W., Rahmi and Al Muttaqii, M. (2022) ‘Improving the quality of lignite through addition of vacuum residue using slurry dewatering process’, in Proceedings of The 7th International Symposium on Applied Chemistry 2021. AIP Publishing, p. 020002. Available at: https://doi.org/10.1063/5.0111602.

Sun, P., Heng, M., Sun, S.-H. and Chen, J. (2011) ‘Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water’, Energy Conversion and Management, 52(2), pp. 924–933. Available at: https://doi.org/10.1016/j.enconman.2010.08.020.

Wan, K., Pudasainee, D., Kurian, V., Miao, Z. and Gupta, R. (2019) ‘Changes in physicochemical properties and the release of inorganic species during hydrothermal dewatering of lignite’, Industrial & Engineering Chemistry Research, 58(29), pp. 13294–13302. Available at:

https://doi.org/10.1021/acs.iecr.9b01691.

Wu, J., Liu, J., Zhang, X., Wang, Z., Zhou, J. and Cen, K. (2015) ‘Chemical and structural changes in XiMeng lignite and its carbon migration during hydrothermal dewatering’, Fuel, 148, pp. 139–144. Available at: https://doi.org/10.1016/j.fuel.2015.01.102.

Yu, Y., Liu, J., Wang, R., Zhou, J. and Cen, K. (2012) ‘Effect of hydrothermal dewatering on the slurryability of brown coals’, Energy Conversion and Management, 57, pp. 8–12. Available at: https://doi.org/10.1016/j.enconman.2011.11.016.

Zhang, D., Liu, P., Lu, X., Wang, L. and Pan, T. (2016) ‘Upgrading of low rank coal by hydrothermal treatment: Coal tar yield during pyrolysis’, Fuel Processing Technology, 141(1), pp. 117–122. Available at: https://doi.org/10.1016/j.fuproc.2015.06.037.

Zhang, Y., Wu, J., Wang, Y., Miao, Z., Si, C., Shang, X. and Zhang, N. (2016) ‘Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite’, Fuel, 164, pp. 128–133. Available at: https://doi.org/10.1016/j.fuel.2015.09.055.

Downloads

Published

2025-04-23