TECHNICAL AND ECONOMIC ASSESSMENT ON ENVIRONMENTAL QUALITY MANAGEMENT OF COAL STOCKPILE FOR ENVIRONMENTAL SUSTAINABILITY

PENILAIAN TEKNIS DAN EKONOMIS KUALITAS PENGELOLAAN LINGKUNGAN STOCKPILE BATUBARA UNTUK LINGKUNGAN BERKELANJUTAN

RESTU JUNIAH¹¹, NOVITASARI AMBARITA¹, SYARIFUDIN¹, SYAIFUDIN ZAKIR², HISNI RAHMI³, and RIDHO R. AMANDA ¹

Mining Engineering of Sriwijaya University, Palembang 30139, Indonesia
 Public Administration of Sriwijaya University, Palembang 30139, Indonesia
 Mining Engineering of Jambi University, Jambi 36122, Indonesia
 *Corresponding author: restu juniah@yahoo.co.id

ABSTRACT

Coal mining has positive impacts in the form of increasing the national economy and people's income. However, it also has negative impacts, including the decrease of environmental quality such as air, soil, and noise, as well as the potential for spontaneous combustion. The research was conducted to assess the technical and economic aspects of environmental management at coal stockpiles in the Tarahan Port Unit of PT Bukit Asam Tbk to support environmental sustainability. The technical assessment of stockpile environmental management was carried out by comparing observation results with the Environmental Management and Monitoring Plan Document (RKL/RPL) and Indonesia's applicable Environmental Quality Standards. The economic assessment focused on the cost of environmental monitoring and management by observing the discrepancies between the planned and realization in the first and second quarters. The technical assessment results show that environmental management at the stockpile has been implemented effectively. Air quality parameters and noise levels remain below the established standards, soil quality is classified good as indicated by vegetation growth, and no spontaneous combustion occurred during the observation period. The economic assessment revealed a discrepancy of 2.02% between the planned cost of IDR 121,183,548 to the actual realization of IDR 123,641,668. This increase was attributed to the construction of a dust reduction system and an operational chimney for the 2X8 MW Steam Power Plant, through the use of Electrostatic Precipitators. The study recommends a detailed inventory of environmental cost plans and potential cost escalation to anticipate risk factors. It also highlights the need for regular maintenance of machines that are known to frequently produce emissions. These efforts are expected to reduce the emissions and lower the costs of environmental management and monitoring.

Keywords: assessment, technical, economic, environmental management, stockpile.

ABSTRAK

Pertambangan batubara memberikan dampak positif dalam meningkatkan perekonomian negara dan pendapatan masyarakat. Di sisi lain juga memberikan dampak negatif berupa menurunnya kualitas lingkungan hidup, seperti kualitas udara, tanah, kebisingan, dan potensi swabakar. Penelitian ini bertujuan untuk menilai kualitas pengelolan lingkungan stockpile batubara Unit Pelabuhan Tarahan PT Bukit Asam Tbk secara teknis dan ekonomis untuk lingkungan berkelanjutan. Penilaian teknik pengelolaan lingkungan stockpile dilakukan dengan melihat kesesuaian hasil observasi dengan dokumen rencana pengelolaan/pemantauan lingkungan (RKL/RPL), dan Standar Mutu Lingkungan yang berlaku di wilayah Indonesia. Penilaian ekonomi dilakukan pada biaya pemantauan dan pengelolaan lingkungan dengan mengamati ketidaksesuaian antara rencana dan realisasi dengan Kuartal I dan II. Hasil penilaian teknis menunjukkan bahwa pengelolaan lingkungan hidup di stockpile sudah dilaksanakan dengan baik, terlihat dari parameter kualitas udara dan tingkat kebisingan masih di bawah

baku mutu lingkungan yang ditetapkan, kualitas tanah tergolong baik, terbukti dengan tumbuhan yang tumbuh, dan untuk swabakar tidak pernah terjadi selama masa pengamatan. Penilaian ekonomi pengelolaan lingkungan yang direncanakan dengan realisasi terdapat ketidaksesuaian sebesar 2,02% dari rencana semula sebesar Rp 121.183.548 menjadi Rp 123.641.668. Peningkatan ini disebabkan oleh pembangunan sistem peredam debu dan cerobong operasional Pembangkit Listrik Tenaga Uap 2X8 MW, melalui penggunaan Electrostatic Precipitator. Penelitian ini merekomendasikan inventarisasi rinci rencana biaya lingkungan dan eskalasinya guna mengantisipasi faktor risiko dan juga melakukan perawatan mesin yang diketahui sering menghasilkan emisi. Dengan demikian emisi yang dihasilkan terpantau menurun, dan dana pengelolaan dan pemantauan lingkungan juga berkurang.

Kata kunci: penilaian, teknis, ekonomi, pengelolaan lingkungan, stockpile.

INTRODUCTION

Environmental-friendly development has been reported to be important for nations, which are oriented to natural resources and societal preservations (Juniah, 2014), as the mining industry is observed to be similar to two sides of a coin. On one side, it has an important role in improving the country and community's economy (Kioe-A-Sen et al., 2016; Ribeiro et al., 2016; Ribeiro, Suárez-Ruiz and Flores, 2016; Batsaikhan et al., 2017; Juniah, 2017; Kodir et al., 2017; Mishra and Das, 2017; Ping et al., 2017; Rela et al., 2020). The mining contribution to other industrial sectors is also very important in maintaining the function of the global economy, as well as the community's Furthermore, it provides amounts of energy, raw materials for industries and building infrastructure, producing goods and services, improving the life quality in the community, etc. (Carvalho, 2017; Juniah et al., 2017; Agboola et al., 2020).

Real steps taken in environmental management and monitoring planning could prevent and reduce environmental impacts caused by mining activities (Kun, 2019). Ecological, environmental and social problems as the negative impact of mining result in a significant decrease in the groundwater table, which results in the lack of water supply needed by humans, animals and the reduction and death of surface plants (Jin et al., 2021; Juniah et al., 2023). An important issue in water management is ensuring that the supply area for drinking water sources consumed by people living around coal mining is safe. This is very important because the quality of drinking sources is closely related to public health. (Ding et al., 2017). A major role in the Human Health, social stability and, sustainable economic development is played by safe drinking water. Therefore, the safety of water quality must be maintained from water pollution (Dong et al., 2019; Guo and Cheng, 2019).

Pollution emission is one of the serious environmental problems as a result of mining activities (Xu, Ma and Xie, 2017). The impact of coal mining on air pollution occurs when coal is burned. As a result of combustion, CO₂, NO_x, SO₂ gases and Hg, As, Se and will be emitted into the air as hazardous materials which are released into the air (Setiawan *et al.*, 2018). Air pollution causes premature birth, weakens the performance of the heart, respiratory system and lungs (Trianisa, Purnomo and Kasiwi, 2020).

On the opposite side of the coin, mining is one of the potential sectors for environmental degradation. It has the ability in making the society unfriendly, due to pollutants produced by industries (Wantzen and Mol, 2013; Kodir et al., 2017; Mishra and Das, 2017; Juniah, 2018; Juniah, Susetyo and Rahmi, 2019; Yovanda et al., 2023). Examples are related to a decrease in air quality, which occurred in previous studies carried out by (Schwegler, 2006; Pandey, Agrawal and Singh, 2014; Pokorná, Hovorka and Brejcha, 2016; Boyles et al., 2017; Greene and McGinley, 2019; Myllyvirta and Suarez, 2020). Also, examples of air pollution originating from SO₂ emissions in Kankovo Township. Zambia, were entirely considered by the community, as a result of mining operations. Air pollution is also one of the most significant environmental problems, which are encountered by communities living in and around mining areas (Araya et al., 2020). Similarly, the impact of CO₂ emissions as air pollutants from coal-fired power plants, contributed to environmental problems (Bian et al., 2009; Pandey, Agrawal and Singh, 2014; Andika and Valentina, 2016; Nádudvari et al., 2020). Meanwhile, other potential impact emerged from the use of fossil fuels in large quantities, which is likely to result in health deterioration of living things (Boyles et al., 2017; Emmanuel, Jerry and Dzigbodi, 2018; Greene and McGinley, 2019; Muslim and Helmy, 2020; Satriawan et al., 2021),

such as noise (Mishra and Das, 2017; Lilic *et al.*, 2018), spontaneous combustion (Ribeiro *et al.*, 2016; Ribeiro, Suárez-Ruiz and Flores, 2016, 2020; Saffari, Sereshki and Ataei, 2019; Gogola *et al.*, 2020; Onifade and Genc, 2020) and a decrease in soil quality (Rai and Paul, 2011; Masto *et al.*, 2015; Dejun, Zhengfu and Shaogang, 2016; Mushia, Ramoelo and Ayisi, 2016; Guo *et al.*, 2018; Park *et al.*, 2020). These impacts occurred in an attempt to secure more energy, food, and infrastructure. In addition, there were traces of environmental contamination and human health hazards (Gasparotto and Martinello, 2021).

Furthermore, coal loading activities from the stockpiles to barges such as at Tarahan Port Unit of PT. Bukit Asam, have the potential to negatively impacts the environment, such as reduced air and soil qualities, as well as spontaneous combustion. The environmental quality management towards the impact of the coal loading process is also very important, as the air and soil qualities that are discharged into the environment does not exceed the applicable standards. Environmental management and monitoring activities on a regular basis are also very important, in order to overcome these impacts (PT Bukit Asam, 2021).

Therefore, natural resource management policy is compulsory and important for the utilization of raw materials, in the coal mining sector. However, the environment remains sustainable, through the monitoring and management of environmental quality (Zakir and Juniah, 2015). This is in line with sustainable mining management, as stated in Article 33 paragraph (3) of the 1945 Constitution, covering social, economic, and environmental aspects. The social aspect is related to the welfare of the community around the mining area, the economic aspect is related to increasing state and community income, and the environmental aspect focuses on environmental preservation and damage prevention (Gumanti, Juniah and Tagwa, 2016).

Environmental management activities on coal stockpiles have also been found to incur operational costs (Juniah *et al.*, 2017; Yu *et al.*, 2020). External costs are known to reflect the money value of damages, which are caused by the life cycle of coal mining, transportation, and burning, on the functions of human health, the environment, streams,

forests, as well as the ecosystems (Yu et al., 2020). This cost is, ecologically, and socially observed to be a form of protection for the environment (Moersidik et al., 2014; Krawczyk, Majer and Krzemień, 2016; Juniah et al., 2017; Castillo-Eguskitza et al., 2019; Gunton et al., 2020). Due to the environment and natural resources having no money value, protection by providing an economical assessment is required (Damigos, 2006; Juniah, 2014; Juniah et al., 2017).

The utilization of mining natural resources has been observed to play an important role in generating foreign exchange, increasing the economy, as well as improving major industries in developing (Suriname, Mongolia, India, Pakistan, Indonesia, Nigeria), and developed countries, such as the USA (Alabama, Kentucky, Marland, Pennsylvania, Tennessee, Virginia, and West Virginia) and Brazil, Spain (Kioe-A-Sen et al., 2016; Ribeiro et al., 2016; Ribeiro, Suárez-Ruiz and Flores, 2016; Batsaikhan et al., 2017; Juniah, 2017; Kodir et al., 2017; Mishra and Das, 2017; Ping et al., 2017; Rela et al., 2020). For example, mining was found to be an important industrial sector, in Indonesia (Rela et al., 2020). In 2013, the country's foreign exchange, which amounted to USD 28,434,240,130, was generated from the mining sector (Kodir et al., 2017). Data from the Ministry of Energy and Mineral Resources showed that, from the Non-Tax State Revenue, the contribution of the mining sector continued to indicate an increasing trend. This can be seen from the Non-Tax State Revenue of the mineral and coal sector in 2021 of IDR 75.5 trillion, in 2022 of IDR 183.4 trillion which exceeded the target of IDR 101.8 trillion, and in 2023 IDR 173.0 trillion, or 58% of the total Non-Tax State Revenue. Similarly Colombia, there was no doubt about the importance of the mining and energy sectors. In 2011, the mining sector contributed 2.3% to Colombia's GDP, with coal, metals, and other minerals at 68%, 18%, and 13%, respectively (Méndez and Rodríguez, 2016), Also, the African economy was heavily dependent on fossil fuels, with about 91% of the main source on electricity being coal (Mushia, Ramoelo and Ayisi, 2016).

Therefore, as an effective and efficient environmental protection effort in the mining sector, it is important to carry out technical and economical assessments on the implementation of societal quality management and costs, as stated in the RKL-RPL report of PT Bukit Asam Tbk (PTBA), at Tarahan Port Unit. This societal implementation of PTBA Tarahan Unit in 2020, refers to the Environmental Management and Monitoring Plans (RKL & RPL), based on the Governor of Lampung Decree No: G/149/II.05/HK/2015, concerning Permits Environment of Tarahan Port Development Activity Plan.

METHODOLOGY

Research Location

Tarahan Port Unit of PT. Bukit Asam Persero Tbk is located \pm 18 km from Bandar Lampung City, and \pm 6 km to the south of Panjang Port, Lampung Province. These locations are illustrated in Figure 1.

Methods

This method is done as follows:

Assessment of environmental quality management implementation in stockpile

Law No. 32 of 2009 concerning Environmental Protection and Management, regulated the existence of planning, utilization, control,

maintenance, supervision, and regulation enforcement activities. However, the control aspect was divided into prevention, countermeasures, and recovery. Prevention was carried out by issuing environmental quality standards, such as air, water, and soil quality principles. The implementation environmental impact activities was also regulated in a management and monitoring system, as well as required aspects of compliance with permits, regulations, and standards. Assessment on the implementation of environmental monitoring and management activities was also carried out, based on the prevailing laws and regulations in Indonesia. However, the assessment used in this research was the visual observation method, as it had also been adopted by previous studies (Agboola et al., 2020). The first step of a technical assessment towards the implementation of environmental management in the coal stockpile of PTBA at Tarahan Port Unit, was observation. Based on the visual results, an analysis of the quality test was carried out on the chemical physics parameters of ambient air, noise, soil, nonhazardous waste (fly ash and bottom ash). and spontaneous combustion. Furthermore, it was compared to environmental quality standards, as stipulated in Government and Minister of Environment Regulations.

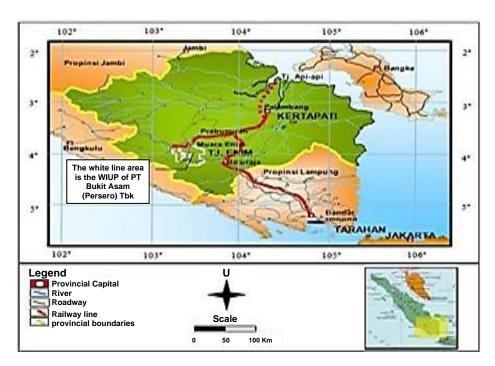


Figure 1. Research location map of PTBA

The selection of Tarahan Port Unit as the sample location was carried out by the purposive sampling technique, with the following considerations,

- (1) Coal stockpile of PTBA Tarahan Port Unit: This is one of the largest stockpiles in Indonesia, which is located in Lampung Province.
- (2) The operational activities of PTBA Tarahan Port Unit: These activities have environmental impacts, which aids in reducing air, noise and soil qualities, as well as the potential for coal spontaneous combustion.

Also, primary data were obtained by,

- (1) Observing the implementation and success rate of environmental management, in the coal stockpile of PTBA, at Tarahan Port Unit,
- (2) Conducting sampling and measurement of air, noise, soil, and spontaneous combustion,
- (3) The quality test results of the physical and chemical parameters, which are related to the environmental management, on the coal stockpile of PTBA at Tarahan Port Unit.

Moreover, secondary data were obtained by conducting literature and institutional studies. Literature study was carried out through the tracing of previous results, national and international journal publications, as well as other sources related to the research problems. Furthermore, the institutional study was obtained from various educational documents of the mining company at Tarahan Port Unit of PTBA and other related agencies. Data processing was also carried out, by comparing the quality standards between the study location's environmental management with the prevailing laws and regulations in Indonesia. Also, data analysis was descriptively conducted, in order to technically and economically explain the implementation and success environmental quality management, in the coal stockpile of PTBA Tarahan Port Unit.

- A. Environmental monitoring and management procedure
- Quality of Ambient Air Emissions and Noise
 Monitoring the quality of ambient air and

Monitoring the quality of ambient air and noise was conducted to observe the extent by which they were to be carried out in PTBA Tarahan Port Unit. This was in accordance with the Environmental Quality Standards, which had been stipulated by a Government Regulation Decree, and/or the Indonesian Minister of Environment.

The monitoring periods of the air and noise quality were carried out once every month (Figure 2). Therefore, the procedures for the monitoring and management of ambient air and noise quality emissions are as follows.

- a. Monitored Impact and Parameter Indicators
 The monitored environmental impact and parameter indicators were in accordance with the Government Regulation no. 41 of 1999, concerning Air Pollution Control, as well as the
- Minister of the Environment Decree No. Kep-48/MENLH/XI/1996, on Noise Level Standards.

 b. Source of Impact Sources of impact from the operational

activities of Tarahan Port, includes coal

shipping and transportation activities.

c. Monitoring Location The monitoring locations where the ambient air and noise qualities were carried out, included the coal stockpile of PTBA at Tarahan Port Unit, and the surrounding residential areas of neighbourhood 22 and 23, Batu Serampok.

Figure 2. (a) monitoring air emissions, (b) monitoring noise

Monitoring points:

U1 = The corner of stockpile 3

U2 = Near the water tank

U3 = Yard of the STATE Electricity Company (PLN) boarding house

U4 = Yard of the Begandang IV restaurant

U5 = Yard of the Batu Serampok Village Residents

2. The quality of the coal stockpile spontaneous combustion

When the spontaneous combustion of the stockpile occurs on a large scale, it causes air pollution, and reduces the quality and amount of coal that should be sold. In order to prevent this case, PTBA at Tarahan Port Unit, conducted spontaneous combustion monitoring at the coal stockpile location.

This monitoring period was carried out at any time, via direct observation in the field. The procedures for monitoring and managing coal pile spontaneous combustion are as follows,

- a. Monitored Impact and Parameter Indicators
 - The indicators monitored were the occurrence of spontaneous combustion, at the front location and coal stockpiling.
- b. Source of Impact
 Sources of impact were observed from
 coal stockpiling activities.
- c. Monitoring Location

 Monitoring of spontaneous combustion
 was carried out at 4 locations, namely:
 - Stockpile 1
 - Stockpile 2
 - Stockpile 3
 - Stockpile 4
- 3. Soil Quality Monitoring and Management Soil quality monitoring and management in PTBA at Tarahan Port Unit, was carried out through reforestation, which involved the planting of trees (Figure 3). Moreover, plant management was carried out using compost. Before moving to the soil, the trees were initially planted in polybags, as there was no soil physical chemistry test during its management. This was due to the existing soil being heaped and rocky.

Economic valuation

Economic valuation was carried out quantitatively, by calculating the environmental costs incurred, which were observed as activity externalities in the coal stockpile.

Figure 3. (a) monitoring in the SBS area, (b) planting in the weighing area

RESULTS AND DISCUSSION

Positive and Negative Impacts of Coal Mining

Even though the mining contribution to other industrial sectors was very important in maintaining the community welfare and global economy function, it is also observed to have an impact on the environment, which was likely to disrupt public acceptance towards this sector, especially when the effect management was not properly carried out (Mancini and Sala, 2018).

Environmental Issues on Coal Stockpile

A coal stockpile should be stored for a certain time, before being transported and utilized. Environmental issues in the management of coal stockpiles, includes,

- (1) Dust, toxic fumes, heavy metals, and radiation spills of chemicals, which are poison miners, have caused health problems throughout their existence.
- (2) An increase in waste of toxic and hazardous materials or B3, which requires special handling.
- (3) The smoke from coal piles, which are observed to reduce air quality.

Environmental problem have also occurred in coal stockpiles through the following,

- As a result of leaching process that occurs by rainwater against the coal surface or forming acidic leachates, which are known to pollute the waters,
- (2) Most of Indonesia's coal includes lignite to bituminous types, which are spontaneouscombustible, as a result of oxidation that increases temperature.

These aforementioned issues were found to have eliminated environmental functions as

carbon assimilators, in order to provide clean energy, which were needed by humans and other living things. Therefore, the use of coal should always maintain the sustainability of environmental functions (Juniah and Sastradinata, 2017; Juniah, 2018).

In order to minimize environmental impacts, irregular landscaping, mine pits, high erosion and sedimentation, low soil fertility, as well as the production of acid mine drainage were observed to have lasted for hundreds of years, which in turn kills biota in public waters. These also required planning, implementation, supervision, as well as an assessment of good mining activities.

Technical Assessment of Environmental Quality Management Implementation in Stockpile

1. Ambient Air Quality

Coal as the main energy source, was a basic requirement for fulfilling the energy needs of a country (Ping et al., 2017). However, its use had been observed to produce carbon dioxide emissions, which also contributes to air pollution (Andika and Valentina, 2016). Air pollution causes a decrease in atmospheric quality, due to the release of dust and gaseous pollutants, such as sulphur and nitrogen dioxide (SO2 and NO2), as well as particulate matter (Ghose and Majee, 2000). A decrease in air quality is found to have an impact on coal dust dispersion, due to wind assistance (blows on the coal pile), as well as when unloading and loading of charcoal into transport vehicles. The most important parameters for air quality within the active surface mine area, were the total suspended particles (TSP) and residues with an aerodynamic diameter smaller than 10 μm (PM10) (Weng et al., 2012).

Also, another impact was on the living things' health, which emerged from air pollution, due to the large use of coal fossil fuels (Boyles et al., 2017; Emmanuel, Jerry 2018: and Dzigbodi, Greene McGinley, 2019; Satriawan et al., 2021). This impact was as a result of dust, sulphur and nitrogen dioxide (SO₂ and NO₂), as well as particulate matter (Pandey, Agrawal and Singh, 2014). Coal mining contributes to air pollution. The results of research by Heydrix Michael et.al 2020 on Australian coal mines during the 20082018 showed that coal mines emitted 42.1% of national PM10 air emissions from NPI sites. Pure PM2.5 is 19.5% of the national total, metals are 12.1%, and nitrogen oxides are 10.1%. Air exposed to coal dust is inhaled by miners during working hours. These parameters were observed to increase significantly in areas with coal mining, compared to regions without the activity. For example, in New South Wales, there has been a significant increase in areas with coal mining, compared to other states without the activity. Moreover, it also had an impact on health, resulting in the occurrence of diseases such as an increased risk of cancer, cardiovascular and respiratory disorders, "pneumoconiosis", chronic bronchitis, silicosis, tuberculosis (Swain, Goswami and Das, 2011), ARI (acute respiratory infection), coughs, colds, and asthma (Muslim and Helmy, 2020). Additionally, health impacts were observed to often occur in mining workers, as well as the surrounding community. Beside the negative impacts on the human health. Also, air pollution was observed to cause inflation. As in the Philippines, air pollution incurred an economical cost of around IDR 2 billion (PHP 103 billion), due to lower life quality and increased health care values. Therefore, air pollution was conclusively the biggest environmental risk factor for human health and the environment, in the Philippines (Myllyvirta and Suarez, 2020).

Generally, the dust particulates' size in the air also has an impact on health, with the most dangerous ones ranging from 0.1 to 10 micron. Airborne particulates are inhaled directly into the lungs and settle in the alveoli, on a size of about 5 microns. However, this does not mean that particulate sizes larger than 5 microns were harmless. Larger particulates are observed to disturb the upper respiratory tract, which in turn causes irritation. When there is a synergistic reaction with SO₂ gas present in the air from the coal crusher, as well as loading and unloading activities, this situation tends to become worse. Also. irritation to the eyes have been reported to block visibility, due to dust particles floating and flying in the wind. Furthermore, the greatest danger to human health is the presence of toxic metals in the dust particles floating in the air. However, the polluted air only contains hazardous

metals, which are about 0.01% to 3% of all dust particulates. The metals contained in the inhaled air have greater effects, compared to similar doses emerging from food or drinking water. This is because metals are accumulative, with high possibilities of svneraistic reactions occurring in the body tissues (Rusdianasari, 2015). However, PM10 was formed due to mechanical disturbances (crushing, grinding and surface abrasion), spray evaporation, and dust re-suspension. The oxidation of SO₂ in the atmosphere were observed to occur homogeneously in the gas and water phases (rain drop), as well heterogeneously on the particle's surface or a combination of the three (Pandey, Agrawal and Singh, 2014).

Apart from human health, dust from mining waste disposal also polluted the soil (Bian et al., 2009; Swain, Goswami and Das, 2011), and biodiversity, because during the combustion process, greenhouse emissions were formed with several other gases, such as H₂O, CO₂, CO, CH₄, H₂S, H₂, SO₂, SO₃, HCl, and NH₄, which were concentrated in the atmosphere, absorbed by trees (flora), and inhaled by fauna (Agboola et al., 2020).

Environmental monitoring and management at Tarahan Port Unit of PTBA, which were related to the chemical physics parameters of ambient air, were carried out by identifying, assessing, and controlling the dust impacts, as well as the type of sources. Moreover, this method was previously used for dust impact management in Serbian mines. This was observed to be efficient, in order to reduce dust below the permitted standard (Manwar, Mandal and Pal, 2016; Lilic et al., 2018).

Based on the assessment carried out on the quality test results of chemical physics parameters, monitoring and management of ambient air and noise qualities in the coal stockpile of PTBA at Tarahan Port Unit, were in accordance with the quality standards, which were set by the two regulations applied in Indonesia. The results are presented in Table 1 and Figure 4, respectively.

Table 1 and Figure 4 show that the quality of the air physics and chemical parameters of Tarahan Port Unit, was below the standard required Government by Regulation No. 41 of 1999, with values of dust, CO, SO₂, NO₂, O₃, HC, Pb, and PM10 at 159.6, 12.01, 28.8, 26.2, 16.88, 6.6, < 0.01, and 56.64 (µg/Nm³), respectively. These results indicated that the ambient air level in Tarahan Port Unit of PTBA was stable and normal, as it was safe to be released into the atmosphere, in order to minimize the impact that was to emerge on the health of mining workers and community living around the stockpile.

However, a previous study by (Muslim and reported Helmy, 2020) different observations, where the dust parameters in the research area was above standards, with indication of an average value of 224 µg/Nm³ for the 7 monitoring location points. These results indicated that the current management of dust parameters (159.6 224 µg/Nm³) in Tarahan Port Unit of PTBA, was better than before. This research also found that the reduction in dust was caused by the use of a suppression system in each dropping zone, transfer chute, feeding hopper, and belt conveyor. Therefore, the coal dust was sucked into this equipment, resulting in less concentrated potential in the air.

Table 1. Test results of physical and chemical parameters quality for monitoring ambient air quality

Parameter	Unit	Sampling	Government Regulation No. 41 of 1999 Minister of the Environment Decree No. Lep-48/MENLH/XI/1996
Dust	(µg/Nm³)	159.6	230
CO	(µg/Nm³)	1201	10000
SO_2	(µg/Nm³)	28.8	365
NO_2	(µg/Nm³)	26.2	150
Оз	(µg/Nm³)	16.88	235
HC	(µg/Nm³)	6.6	160
Pb	(µg/Nm³)	< 0.01	2
PM ₁₀	(µg/Nm³)	56.64	150

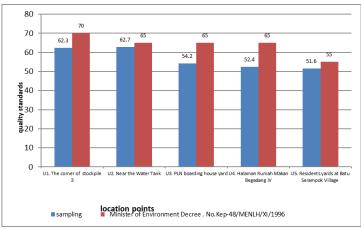


Figure 4. Comparison of quality for Physical and Chemical Parameters in Monitoring Ambient Air Quality with the quality standard accroding to Indonesian Government Regulation No. 41/1999

2. Noise Quality

Noise at the stockpile location was caused by sounds, which were emitted by heavy equipments, when loading and unloading into/from transport vehicles (Rusdianasari, 2015). Apart from dust, noise was also recognized as a major pollutant for the mining environment, as it posed a high risk to health when its permitted level had been exceeded. Accordingly, noise should be prevented via the use of mapping. Besides being very efficient, this method is also cheap in solving environmental noise problems (Manwar, Mandal and Pal, 2016; Lilic et al., 2018). In India, the noise mapping method was mandatory for use in coal mining, as recommended by the Tenth Conference on Safety in Mining (Manwar, Mandal and Pal, 2016). This method should be carried out by using efficient and accurate computer modeling software. This should also be strategized at the mine planning stage (Madahana, Nyandoro and Moroe, 2020).

The noise test results and quality standards are presented in Table 2.


Table 2 and Figure 5 show the noise level in the coal stockpile, at Tarahan Port Unit of PTBA. Generally, the condition was below the quality standard required by the Minister of Environment Decree No. Kep-48/MENLH/X1/1996, concerning Noise Level Standard.

The parameters above are very important as benchmarks for noise quality standards. Mostly, the noise level at Tarahan Port Unit of PTBA, was in stable and normal conditions, and the potency on the community health around the coal stockpile, was relatively small.

Furthermore, these results indicated that the implementation of noise management at Tarahan Port Unit of PTBA, was in accordance with the Indonesian Minister of Environment Decree.

Table 2. The Results of Noise Test and Noise Quality Standards

Location	Parameter	Unit	Sampling	Minister of the Environment Decree. No.Kep-48/MENLH/XI/1996
U1. The corner of stockpile 3	noise	dBA	62.3	70
U2. Near the Water Tank	noise	dBA	62.7	65
U3. PLN boarding house yard	noise	dBA	54.2	65
U4. Begadang IV Restaurant yard	noise	dBA	52.4	65
U5. Residents Yards at Batu	noise	dBA	51.6	55
Serampok Village				

- U1 = The noise value at the monitoring point location corner of Stockpile 3 at 62.3 dBA.

- U1 = The noise value at the monitoring point location corner of Str U2 = The water tank at 62.7 dBA. U3 = The PLN boarding house yard at 54.2 dBA. U4 = The Begadang 4 Restaurant yard at 52.4 dBA. U5 = The residential yards of Batu Serampok Village at 51.6 dBA.

Figure 5. Comparison of quality on Physical and Chemical Parameters for Noise Monitoring with the quality standards of the Indonesian Minister of Environment Decree.

3. Spontaneous Combustion Management of Coal Stockpiles

Coal has been observed to have a tendency to undergo self-combustion or Spontaneous Coal Combustion (SCC), which is likely to cause uncontrolled fires when exposed to air (Finkelman, Wolfe 2021). and Hendryx, SCC phenomenon that starts with self-heating on the coal surface, without any additional externalities. The existence of SCC in coal mining also posed a high risk to the workers and environment, because of its potential to trigger fires. Self-heating is observed to occur when insufficient heat generated by coal oxidation, is dissipated into the surrounding environment. This heat accumulation causes a slow temperature increase, at the beginning of the coal oxidation stage. Once the temperature attains a critical point of 60-120°C, thermal runaway occurs, and the self-heating rate of coal is likely to take off in a relatively short period of time. The phenomenon spontaneous of this combustion was observed to always be a big challenge in the coal industry, which is also affected by many parameters, such as pyrite and moisture content. These fires aids the ignitions in coal waste piles, stockpiles, transits, as well as surface and underground mines (Finkelman, Wolfe and Hendryx, 2021). However, largescale spontaneous combustion causes air pollution, and reduces the quality and amount of coal that should be sold. Therefore, the Tarahan Port Unit of PTBA had to conduct monitoring, in order to prevent the emergence of the spontaneous coal combustion danger at the stockpile location (PT Bukit Asam, 2020a).

Based on the assessment conducted on the management of SCC at Tarahan Port Unit of PTBA, there was no occurrence of SCC. Therefore, it was concluded that the management of SCC had implemented properly and correctly. The monitoring activities on SCC at the Tarahan port unit of PTBA for the August 2020 period, are shown in Table 3.

Table 3. Monitoring Activities on SCC at Tarahan Port Unit of PTBA for the August 2020 Period

Monitoring date	Monitoring Point (Stockpile)	Description				
4 4 20	1 2 3 4					
1-Aug-20						
2-Aug-20						
3-Aug-20						
4-Aug-20						
5-Aug-20	NO CRONTANICOUS COAL					
6-Aug-20						
7-Aug-20	NO SPONTANEOUS COAL COMBUSTION					
8-Aug-20						
9-Aug-20						
10-Aug-20						
11-Aug-20						
12-Aug-20						
13-Aug-20						

Monitoring date	Monitoring Point (Stockpile)				Description		
uale	1	2	3	4			
14-Aug-20							
15-Aug-20							
16-Aug-20							
17-Aug-20							
18-Aug-20							
19-Aug-20							
20-Aug-20	NO SPONTANEOUS COAL COMBUSTION						
21-Aug-20							
22-Aug-20			COIV	шо	TION		
23-Aug-20							
24-Aug-20							
25-Aug-20							
26-Aug-20							
27-Aug-20							
28-Aug-20							
29-Aug-20							
30-Aug-20							
31-Aug-20	20						

Source: Author, 2021

Descriptions:

- Extinguishing action was carried out
- Actions were in accordance with the Management Procedure of SCC
- The Executive of Operational Support Division

4. Soil Management

The soil in ex-mining land is often characterized by low organic matter (SOM) content, due to the significant loss of nutrition associated with SOM. This loss of nutrition includes nitrogen (N), phosphorus (P), potassium, Iron (Fe), Copper (Cu), reduced fertility, as well as decreased physical, chemical, and biological properties of soil quality (Figure 6) (Rai and Paul, 2011; Swain, Goswami and Das, 2011; Mushia, Ramoelo and Avisi, 2016). These malnutrition changes includes compression, decreased soil resistance to productivity, reduced soil erosion, infiltration rates affecting groundwater, as well a less soil pH and microbial population (Fitrianti, Nurcholis and Mulyanto, 2018). Moreover, low nutrient elements were caused by soil acidity, due to intensive leaching (Swain, Goswami and Das, 2011; Rahman, Howladar and Farugue, 2017). Soils with high acidity are found to reduce bacterial activity, which in turn leads to permanent sterility (reduces productivity and tends to inhibit formation and plant growth), due to very low amounts of nitrogen, phosphorus, and potassium.

Soil in the ex-mining land were observed to contain low chemical properties, such as cation exchange capacity (CEC), organic matter (OM), and ppm base saturation (Ernawati, 2008).

Figure 6. Degradation of the soil quality at coal mining area in Jharia, Jharkhand

However, soil quality assessment is one of the key parameters for evaluating a contaminated mining environment (Masto et al., 2015). This is because plants need to assimilate nutrients from quality soil, in order to complete their vegetative and reproductive life cycle. Other important elements, such as carbon, hydrogen, and oxygen, which are available to plants, are obtained freely from CO2 and water. converted These then are into carbohydrates, during the process of photosynthesis (Unanaonwi and Amonum, 2017).

Besides nutrients, other impacts on soil quality include a decrease in the average value of soil water content (SWC), cohesion, organic matter, as well as an increase in the mean rate of the inner fraction angle. However, it does not significantly affect soil and dry densities, as well as porosity. The decline in the surface of the coal mining were also observed to have an impact on soil quality (Dejun, Zhengfu and Shaogang, 2016; Guo et al., 2018).

The management used in improving the quality of degraded soil was performed by planting trees. The choice of tree species greatly influenced the increase, for example, long-rooted plants help in restoring fertility (Swain, Goswami and

Das, 2011). Furthermore, a mixture of desulphurized coal waste with rice husk ash, steel slag, and sludge disposal as a technosol constituent, were observed to produce soil that helps in promoting plant growth (Firpo, Weiler and Schneider, 2021).

The soil management carried out by PTBA at Tarahan Port Unit, was reforestation by planting of trees. In addition, plant management was carried out by using compost. Also, before moving to the ground, the plants species were planted in polybags. In the soil management at Tarahan Port Unit of PTBA, there was no occurrence of

physical chemistry test. This was mainly because of the heaped and rocky nature of the existing soil. The management efforts being carried out were,

- (1) Planting green plants around the Tarahan Port area, as a medium for rainwater absorption.
- (2) Providing Green Open Space.
- (3) Performing reforestation in operational road areas, as well as locations that have the potential for more dust.

The species of plant seeds managed by PTBA, Tbk at Tarahan Port Unit, and its benefits for the environment (air, land, and water), are presented in Table 4.

Table 4. Species of plant seeds managed by PTBA at Tarahan Port Unit and its benefits for the environment (air, land, and water)

Species of Seed	Seed Stock per July 2020	Planting in August 2020	The rest of the seeds per August 2020	Benefits of these plants for the environment
Buddha's Belly Bamboo (Bambusa tuldoides 'Ventricosa')	121	0	121	
Haur Geulis Bamboo (Bambusa vulgaris var vitata)	116	0	116	Erosion barrier to prevent flood hazards.
Petung Bamboo (Dendrocalamus asper)	535	25	510	Handling toxic waste due to mercury poisoning
Latin African Bamboo (Oxytenathera abyssinica)	108	0	108	Source of well water supply
Chinese Yellow Fence Bamboo (<i>Bambusa</i> multiplex 'Alphonse Karr')	161	10	151	
Agarwood	388	0	338	Erosion barrier
Eucalyptus Wood	332	0	332	As a biofilter for heavy metal pollution
Mahogany	17	0	17	Absorb air pollution O ₂ generator
Pulai	5	0	5	O ₂ generator Water infiltration guard Storing groundwater reserves
Sandalwood	261	0	261	Erosion barrier Water infiltration guard
Ironwood	48	0	48	Maintain soil fertility O ₂ generator CO ₂ absorber
Cinnamon	284	0	284	Removes fungus Soil fertilizers
Ketapang Kencana	254	0	254	Absorb air pollution
Small Mangroves (<i>Rhizopora stylosa</i>)	142	0	142	Storm and flood surge barrier Protecting the shoreline area Slowing erosion
Damar	6	0	6	Erosion barrier Soil fertilizers
Ebony	19	0	19	Soil fertilizers
Total	2797	35	2712	

Source: (PT Bukit Asam, 2020b)

Table 4 shows the species of plants managed at PTBA, at Tarahan Port Unit. These plants were observed to improve the soil quality and greenness of the surrounding environment, as it beneficial for a sustainable environment (air, noise, and soil). The bamboo species used in this process were Buddha's Belly (Bambusa tuldoides ventricosa), Haur Geulis (Bambusa vulgaris var vitata), Petung (Dendrocalamus asper), and Chinese yellow fence (Bambusa multiplex alphonse karr). Other species that were includes used, agarwood. also eucalyptus, mahogany, sandalwood, Ironwood (Ulin), Cinnamon, Ketapang kencana, Small mangroves (Rhizopora stylosa), Damar, and Ebony.

In 2020, Tarahan Port Unit of PTBA, won the Gold Proper award at the Company Performance Rating Program (Proper) event, from the Ministry of Environment and Forestry for land management, via the use of greening methods and plantation of plant and tree species, as shown in Table 4 (PT Bukit Asam, 2021). This award was provided on the innovative basis of PTBA in the field of Community Social Responsibility (CSR). for the bamboo downstream program, via the plantation of ten thousand seedlings, which were scattered in various locations. The company also made bamboo vinegar available for use in the agricultural sector, as well as liquid disinfectant products, which are needed in fighting the COVID-19 outbreak. Another award was won from the Indonesian Record Museum (MURI), with the innovation of planting bamboo at 2-5 meters below sea level (masl) on the beach, with the most available species. Gold Proper was the highest award to be won by a company, confirming the organization's sustainable efforts in the environmental sector, innovating in the aspects of resource management, as well community development Through empowerment. this achievement, it was observed that the environmental management for land contaminated by coal stockpile at Tarahan Port Unit of PTBA had been carried out effectively and efficiently.

Technical Assessment on Quality Implementation of Environmental Management Plan (RKL)

implementation of environmental management was carried out through various efforts, in order to control and improve the environment, which were stated in the RKL-RPL document, as well as other societal activities that were commitments of PTBA at Tarahan Port Unit. Based on the results of the technical assessment, it showed environmental management of ambient air and noise qualities, SCC, and soil, had been implemented by PTBA at Tarahan Port Unit. This was also observed to be in accordance with the RKL-RPL document, and the Environmental Quality Standards, which were applicable in the territory of Indonesia. The results of the technical assessment on the implementation of environmental quality management on coal stockpile at Tarahan Unit of PTBA Bandar Lampung City, Lampung Province, are presented in Table 5.

Table 5. Result of technical assessment on the implementation of environmental quality management on coal stockpile at Tarahan Unit of PTBA in Bandar Lampung City, Lampung Province

No.	Stockpile Environmental	Implemen	ntation	The Management Appropriateness
INO.	Management Activities	Yes	No	
1.	Ambient air and noise management	✓		
	- Spraying with water mist on the	\checkmark		Management is according to the applicable
	surface of the coal stockpile.			quality standards
	- Planting tall protective trees on	\checkmark		
	the coast and in office areas			
2.	Management of SCC Stockpile	\checkmark		
	- Monitoring the stockpile location	✓		Management is according to the applicable quality standards.
3.	Soil Management	✓		
	- Doing reforestation by planting trees.	✓		Management is according to the applicable quality standards.

Economic Assessment on the Implementation of Environmental Quality (RKL) Management Costs at Tarahan Port Unit of PTBA

Environmental management activities on the coal stockpiles were observed to have incurred societal costs (Juniah et al., 2017: Yu et al., 2020). Similar to that of quality, environmental costs occurred due to the activities of the company, which is affecting the societal value (Bangun and Sunarni, 2014). Moreover, environmental costs are basically related to the prices of products, processes, systems, or facilities, which are important for better management decisionmaking. This is because the environment quality is likely to be disturbed, when the resulting industrial waste, such as ash or dust containing chemical compounds, is not monitored and managed, therefore, incurring environmental costs. Also, environmental costs are industrial efforts, which are involved in taking steps, in order to fulfill social responsibilities to the community (Rohelmy, ZA and Hidayat, 2015). Economically, ecologically, and socially, this cost is also observed to be a form of protection for the environment (Moersidik et al., 2014; Krawczyk, Majer and Krzemień, 2016; Juniah et al., 2017; Castillo-Eguskitza et al., 2019; Gunton et al., 2020). These environmental costs reflected the monetary value of damages, which were caused by the life cycle of coal mining, transportation, and burning, to the human health, environment, streams, forests, and ecosystems ekosistem (Yu et al., 2020). Due to the non-monetary value of the environment and natural resources, the protection provided by an economical observed to assessment is require environmental costs (Damigos, 2006; Juniah, 2014; Juniah et al., 2017).

The implementation of the management carried out through various efforts, for control and improvement of activities by PTBA at Tarahan Port Unit, raised environmental costs. Details of the management and environmental monitoring costs of PTBA at Tarahan Port Unit, are presented in Table 6.

Table 6. Details of environmental management and monitoring costs at Tarahan port unit of PTBA

Description of			Dlan and	Realization					
Environmental).		.II	Total				
Management and Monitoring Costs	Plan	Realization	Plan	Realization	Plan	Realization			
a. Air and Noise Emi	ssion Managem	ent							
 Storage of the 	(according	(according	(according	(according	(according to	(according to			
stockpile area	to the	to the	to the	to the	the needs)	the needs)			
	needs)	needs)	needs)	needs)					
The installation	-	-	15,987,668	15,875,543					
of <i>dust</i>									
surpression									
system 3) The construction	<u> </u>		45,000,000	46,986,987	45,000,000	46,986,987			
of 2 X 8 MW)II -	-	45,000,000	40,900,907	45,000,000	40,900,907			
operational									
chimney of									
steam power									
plant (PLTU)									
and using an									
electrostatic									
precipitator									
4) Test on the	(according	(according	(according	(according	(according to	`			
Emissions of	to the	to the	to the	to the	the needs)	the needs)			
Chimney Generator and	needs)	needs)	needs)	needs)					
vehicle exhaus	.								
	b. Land Management / Reforestation								
Planting	(according	(according	(according	(according	(according to	(according to			
.,	to the	to the	to the	to the	the needs)	the needs)			
	needs)	needs)	needs)	needs)					

Description of	Plan and Realization							
Environmental	Q.I		Q	.II	Total			
Management and Monitoring Costs	Plan	Realization	Plan	Realization	Plan	Realization		
2) Rearing	(according	(according	(according	(according	(according to	(according to		
(Fertilization,	to the	to the	to the	to the	the needs)	the needs)		
weeding, etc.)	needs)	needs)	needs)	needs)				
c. Environmental	17,000,000	17,000,000	20,000,000	20,000,000	20,000,000	20,000,000		
Monitoring Costs	(carried out	(carried out	(carried out	(carried out	(carried out	(carried out		
	by a 3rd	by a 3rd	by a 3rd	by a 3rd	by a 3rd	by a 3rd		
	party)	party)	party)	party)	party)	party)		
Total Environmental Management and Monitoring Costs	36,111,000	34,421,543	87,530,668	88,762,005	123,641,668	121,183,548		

Source: Financial Statement in Environmental Document of PTBA at Tarahan Port Unit, Lampung

Based on Table 6, the total costs required to implement environmental quality monitoring and management, in the coal stockpile of PTBA, at Tarahan Port Unit, were IDR 123,641,668 (102.02%) of the originally planned IDR 121,183,548.

The results of above indicated that Tarahan Port Unit of PTBA, had included costs, in order to manage the environmental impact of coal stockpiles, in the company's financial budget. This was in accordance with the company's mission to become an environmentally sound industry (Go Green), with goals set on minimizing environmental impacts.

Also, the assessments carried out on the monitoring and environmental management costs, observed a mismatch between plan and realization with Quarter I and II, due to the following.

- Installation of a dust suppression system in each dropping zone, transfer chute, as well as hopper feeding and conveyor belts, which were completed in September. The actual use of funds was IDR 15,875,543 (99.97%) of the planned amount of IDR 15,987,668.
- 2) Construction of 2X8 MW operational chimney of steam power plant (PLTU), via the use of an electrostatic precipitator. The actual use of funds was IDR 46,689,987 (100.09%) of the planned amount at IDR 45,000,000.

Technically, in order to overcome this aforementioned mismatch, Tarahan Port Unit of PTBA needs to carry out regular maintenance on the emission-producing

machines, which in turn leads to the reduction of the resulting emissions and funds used in managing and monitoring the environment. Economically, it is also necessary to carry out a detailed inventory of environmental cost plans and escalation, in order to anticipate external risk factors.

CONCLUSIONS AND SUGGESTION

The results of the technical assessment on the implementation of monitoring and management, showed that the environmental quality had attained the standards being stipulated by the Regulations of the Government and Minister of Environment. The economic assessment that was carried on the mismatch between planned and realized environmental costs, was due to the installation of a dust suppression system and construction of a 2X8 MW operational chimney of the steam power plant (PLTU). Moreover, this research recommends that the Tarahan Port Unit of PTBA needs to carry out regular maintenance of emission-producing machines, which in turn leads to the reduction of resulting emissions and funds used in managing and monitoring the environment. However, a detailed inventory of cost plans and escalation needs to be performed to anticipate external risk factors.

ACKNOWLEDGEMENT

The authors are grateful to Sriwijaya University and PTBA for supporting this research.

REFERENCES

- Agboola, O., Babatunde, D.E., Isaac Fayomi, O.S., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya, A. and Mamudu, O.A. (2020) 'A review on the impact of mining operation: Monitoring, assessment and management', Results in Engineering, 8(October), p. 100181. Available at: https://doi.org/10.1016/j.rineng.2020.100181.
- Andika, R. and Valentina (2016) 'Techno economic Assessment of Coal to SNG Power Plant in', *Indonesian Journal of Science & Technology* [Preprint].
- Araya, A.S., Nehring, M., Vega, E.T. and Miranda, N.S. (2020) 'The impact of equipment productivity and pushback width on the mine planning process', *Journal of the Southern African Institute of Mining and Metallurgy*, 120(10), pp. 599–607. Available at: https://doi.org/10.17159/2411-9717/1256/2020.
- Bangun, R.N. and Sunarni, C.W. (2014) 'Environmental Costs Reporting And Assessment Of Environmental Performance (Case Study at PT Tangjungenim Lestari Pulp and Paper)', *Jurnal Ilmiah Akuntansi* [Preprint].
- Batsaikhan, B., Kwon, J.S., Kim, K.H., Lee, Y.J., Lee, J.H., Badarch, M. and Yun, S.T. (2017) 'Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia', *Environmental Science and Pollution Research*, 24(2), pp. 2019–2034. Available at: https://doi.org/10.1007/s11356-016-7895-3.
- Bian, Z., Dong, J., Lei, S., Leng, H., Mu, S. and Wang, H. (2009) 'The impact of disposal and treatment of coal mining wastes on environment and farmland', *Environmental Geology*, 58(3), pp. 625–634. Available at: https://doi.org/10.1007/s00254-008-1537-0.
- Boyles, A.L., Blain, R.B., Rochester, J.R., Avanasi, R., Goldhaber, S.B., McComb, S., Holmgren, S.D., Masten, S.A. and Thayer, K.A. (2017) 'Systematic review of community health impacts of mountaintop removal mining', *Environment International*, 107(January), pp. 163–172. Available at: https://doi.org/10.1016/j.envint.2017.07.002.
- Carvalho, F.P. (2017) 'Mining industry and sustainable development: Time for change', Food and Energy Security, 6(2), pp. 61–77. Available at: https://doi.org/10.1002/fes3.109.
- Castillo-Eguskitza, N., Hoyos, D., Onaindia, M. and Czajkowski, M. (2019) 'Unraveling local

- preferences and willingness to pay for different management scenarios: A choice experiment to biosphere reserve management', *Land Use Policy*, 88(August), p. 104200. Available at: https://doi.org/10.1016/j.landusepol.2019.104
- Damigos, D. (2006) 'An overview of environmental valuation methods for the mining industry', *Journal of Cleaner Production*, 14(3–4), pp. 234–247. Available at: https://doi.org/10.1016/j.jclepro.2004.06.005.
- Dejun, Y., Zhengfu, B. and Shaogang, L. (2016) 'Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China', *Environmental Earth Sciences*, 75(8), pp. 1–14. Available at: https://doi.org/10.1007/s12665-016-5439-2.
- Ding, X., Wang, S., Jiang, G. and Huang, G. (2017) 'A simulation program on change trend of pollutant concentration under water pollution accidents and its application in Heshangshan drinking water source area', *Journal of Cleaner Production*, 167, pp. 326–336. Available at: https://doi.org/10.1016/j.jclepro.2017.08.094.
- Dong, S., Xu, B., Yin, S., Han, Y., Zhang, X. and Dai, Z. (2019) 'Water Resources Utilization and Protection in the Coal Mining Area of Northern China', *Scientific Reports*, 9(1), pp. 1–10. Available at: https://doi.org/10.1038/s41598-018-38148-4.
- Emmanuel, A.Y., Jerry, C.S. and Dzigbodi, D.A. (2018) 'Review of environmental and health impacts of mining in Ghana', *Journal of Health and Pollution*, 8(17), pp. 43–52. Available at: https://doi.org/10.5696/2156-9614-8.17.43.
- Ernawati, R. (2008) 'Study Of Soil Chemical Properties Of Coal Mining Used Lands', *Jurnal Teknologi Technoscientia*, 7(1), pp. 1689–1699. Available at: www.journal.uta45jakarta.ac.id.
- Finkelman, R.B., Wolfe, A. and Hendryx, M.S. (2021) 'The future environmental and health impacts of coal', *Energy Geoscience*, 2(2), pp. 99–112. Available at: https://doi.org/10.1016/j.engeos.2020.11.001.
- Firpo, B.A., Weiler, J. and Schneider, I.A.H. (2021) 'Technosol made from coal waste as a strategy to plant growth and environmental control', *Energy Geoscience*, 2(2), pp. 160–166. Available at: https://doi.org/10.1016/j.engeos.2020.09.006.
- Fitrianti, D.A., Nurcholis, M. and Mulyanto, D. (2018) 'Some Physical And Chemical

- Properties Of Soil In The Revegetation Area Of The Sengon Plant In Coal Mine Dump Waste In South Kalimantan', Soil and Water Journal, 15(Desember), pp. 55-60.
- Gasparotto, J. and Martinello, K.D.B. (2021) 'Coal as an energy source and its impacts on human health Juciano', Energy Geoscience, 2, pp. 113-120. Available at: https://doi.org/10.1016/j.engeos.2020.07.003.
- Ghose, M., and Majee, S., (2000) 'Sources of air pollution due to coal mining and their impacts in Jharia coalfield', Environment International, 26, pp. 81-85.
- Gogola, K., Rogala, T., Magdziarczyk, M. and Smoliński, A. (2020) 'The mechanisms of endogenous fires occurring in extractivewaste dumping facilities', Sustainability (Switzerland), 12(7), pp. 10–12. Available at: Sustainability dumping https://doi.org/10.3390/su12072856.
- Greene, C. and McGinley, P.C. (2019) 'Yielding to he Necessities of a Great Public Industry: Denial and Concealment of the Harmful Health Effects of Coal Mining', William and Mary Environmental Law and Policy Review, 43(3), p. 689.
- Gumanti, S., Juniah, R. and Tagwa, R. (2016) 'Study of the Implementation of Mining Company Social Responsibility (Corporate Social Responsibility) Activities on Community Empowerment and the Environment⁷, Empirika, 3441, pp. 111-126.
- Gunton, T., Joseph, C., Pope, M. and Gunton, C. (2020) 'Evaluating Methods for Analyzing Economic Impacts in Environmental Assessment - KSG Report', pp. 1-35.
- Guo, G. and Cheng, G. (2019) 'Mathematical modelling and application for simulation of water pollution accidents', Process Safety and Environmental Protection, 127, pp. 189-196. Available at:
 - https://doi.org/10.1016/j.psep.2019.05.012.
- Guo, X.M., Zhao, T.Q., Chang, W.K., Xiao, C.Y. and He, Y.X. (2018) 'Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis', Chilean Journal of Agricultural Research, pp. 173–182. 78(2), Available https://doi.org/10.4067/S0718-58392018000200173.
- Jin, J., Yan, C., Tang, Y. and Yin, Y. (2021) 'Mine Geological Environment Monitoring and Risk Assessment in Arid and Semiarid Areas', Complexity, 2021, Available at: https://doi.org/10.1155/2021/3896130.

- Juniah, R. (2014) 'Void Our Friends: The Economic Value of Mining Void Water as Raw Water for PT Adaro Indonesia, South Kalimantan', in Prosiding TPT XXIII PERHAPI 2014.
- Juniah, R. (2017) 'Environmental Management and Mining Sustainability Sustainable Environment: Technical Review of Post-Plans', Indonesian Journal of mining Environmental Management and Sustainability, 1(1), pp. 6-10. Available at: https://doi.org/10.26554/ijems.2017.1.1.6-10.
- Juniah, R. (2018) 'Study of Carbon Value of the Allotment of Former Coal Mining Land of PT Samantaka Batubara for Sustainable Mining Environment', Journal of Sustainable Development, 11(4), p. 213. Available at: https://doi.org/10.5539/jsd.v11n4p213.
- Juniah, R., Dalimi, R., Suparmoko, M., Moersidik, S.S. and Waristian, H. (2017) 'Environmental value losses as impacts of natural resources utilization of in coal open mining', MATEC Web of Conferences, 101, pp. 4-8. Available https://doi.org/10.1051/matecconf/201710104 013.
- Juniah, R. and Sastradinata, M. (2017) 'Study benefit value of utilization water resources for energy and sustainable environment', AIP Conference Proceedings, 1903. Available at: https://doi.org/10.1063/1.5011539.
- Juniah, R., Susetyo, D. and Rahmi, H. (2019) 'Technical Review of Land Usage of Former Limestone Mine for Rubber Plantation in PT Semen BaturajaTbk for Sustainable Mining Environment', Journal of Physics: Conference Series, 1338(1). Available https://doi.org/10.1088/1742-6596/1338/1/012024.
- Juniah, R., Toha, M.T., Zakir, S. and Rahmi, H. (2023) 'Potential Economic Value of Water Resource Sustainability for Sustainable Environment: A Case Study in South Sumatra, Indonesia', International Journal on Advanced Science, Engineering Information Technology, 13(1), p. 165. Available at: https://doi.org/10.18517/ijaseit.13.1.16223.
- Kioe-A-Sen, N.M.E., Van Bergen, M.J., Wong, T.E. and Kroonenberg, S.B. (2016) 'Gold deposits of Suriname: Geological context, production and economic significance', Geologie en Mijnbouw/Netherlands Journal of Geosciences, 95(4), pp. 429-445. Available at: https://doi.org/10.1017/njg.2016.40.
- Kodir, A., Hartono, D.M., Haeruman, H. and Mansur, I. (2017) 'Integrated post mining

- landscape for sustainable land use: A case study in South Sumatera, Indonesia', Sustainable Environment Research, 27(4), pp. 203–213. Available at: https://doi.org/10.1016/j.serj.2017.03.003.
- Krawczyk, P., Majer, M. and Krzemień, J. (2016) 'Proposal of economic assessment of hard coal mines operation conducted in Polish conditions with the use of Cost Benefit Analysis', *Archives of Mining Sciences*, 61(4), pp. 875–892. Available at: https://doi.org/10.1515/amsc-2016-0058.
- Kun, M. (2019) 'Assessment and monitoring of rehabilitation studies on coal mine dump site with UAV'S', Applied Ecology and Environmental Research, 17(4), pp. 7381– 7393. Available at: https://doi.org/10.15666/aeer/1704_7381739 3.
- Lilic, N., Cvjetic, A., Knezevic, D., Milisavljevic, V. and Pantelic, U. (2018) 'Dust and noise environmental impact assessment and control in serbian mining practice', *Minerals*, 8(2). Available at: https://doi.org/10.3390/min8020034.
- Madahana, M.C., Nyandoro, O.T. and Moroe, N.F. (2020) 'Engineering noise control for mines: Lessons from the world', *South African Journal of Communication Disorders*, 67(2), pp. 1–5. Available at: https://doi.org/10.4102/sajcd.v67i2.684.
- Mancini, L. and Sala, S. (2018) 'Social impact assessment in the mining sector: Review and comparison of indicators frameworks', Resources Policy, 57(February), pp. 98–111.
- Manwar, V.D., Mandal, B.B. and Pal, A.K. (2016) 'Environmental propagation of noise in mines and nearby villages: A study through noise mapping', *Noise and Health*, 18(83), pp. 185–193. Available at: https://doi.org/10.4103/1463-1741.189246.
- Masto, R.E., Sheik, S., Nehru, G., Selvi, V. a., George, J. and Ram, L.C. (2015) 'Environmental soil quality index and indicators for a coal mining soil', *Solid Earth Discussions*, 7(1), pp. 617–638. Available at: https://doi.org/10.5194/sed-7-617-2015.
- Méndez, J.D.M. and Rodríguez, R.S. (2016) 'A profile of corporate social responsibility for mining companies present in the Santurban Moorland, Santander, Colombia', Global Ecology and Conservation, 6, pp. 25–35. Available at: https://doi.org/10.1016/j.gecco.2015.12.005.

- Mishra, N. and Das, N. (2017) 'Coal Mining and Local Environment: A Study in Talcher Coalfield of India', *Air, Soil and Water Research*, 10. Available at: https://doi.org/10.1177/1178622117728913.
- Moersidik, S.S., Juniah, R., Damayanti, S., Intarti, Y.R., Arief, C. and Pratiwi, Z.R. (2014) 'Model of water resources sustainability: Mining void water utilization in coal mining (case study at PT. adaro Indonesia, South Borneo, Indonesia)', *International Journal of Applied Engineering Research*, 9(9), pp. 1183–1199.
- Mushia, N.M., Ramoelo, A. and Ayisi, K.K. (2016) 'The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity', *Sustainability* (*Switzerland*), 8(6), pp. 1–12. Available at: https://doi.org/10.3390/su8060546.
- Muslim, Z. and Helmy, H. (2020) 'Analysis of the Impact of the Coal Stockpile Industry on the Environment and the Level of Public Health', *Jurnal Visionist*, 9(2), pp. 52–59.
- Myllyvirta, L. and Suarez, I. (2020) Air Quality & Health Impacts of Coal-Fired Power in the Philippines Key findings. CREA (Centre for Research on Energy and Clean Air).
- Nádudvari, Á., Abramowicz, A., Fabiańska, M., Misz-Kennan, M. and Ciesielczuk, J. (2020) 'Classification of fires in coal waste dumps based on Landsat, Aster thermal bands and thermal camera in Polish and Ukrainian mining regions', *International Journal of Coal Science and Technology* [Preprint]. Available at: https://doi.org/10.1007/s40789-020-00375-4.
- Onifade, M. and Genc, B. (2020) 'A review of research on spontaneous combustion of coal', *International Journal of Mining Science and Technology*, 30(3), pp. 303–311. Available at: https://doi.org/10.1016/j.ijmst.2020.03.001.
- Pandey, B., Agrawal, M. and Singh, S. (2014) 'Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis', *Atmospheric Pollution Research*, 5(1), pp. 79–86. Available at: https://doi.org/10.5094/APR.2014.010.
- Park, J., Kwon, E., Chung, E., Kim, H., Battogtokh, B. and Woo, N.C. (2020) 'Environmental sustainability of open-pit coal mining practices at Baganuur, Mongolia', Sustainability (Switzerland), 12(1), pp. 1–20. Available at: https://doi.org/10.3390/su12010248.

- Ping, J., Yan, S., Gu, P., Wu, Z. and Hu, C. (2017) 'Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China', *PLoS ONE*, 12(12), pp. 1–18. Available at: https://doi.org/10.1371/journal.pone.0188949.
- Pokorná, P., Hovorka, J. and Brejcha, J. (2016) 'Impact of Mining Activities on the Air Quality in the Village Nearby a Coal Strip Mine', *IOP Conference Series: Earth and Environmental Science*, 44(3). Available at: https://doi.org/10.1088/1755-1315/44/3/032021.
- PT Bukit Asam (2020a) Laporan Kesehatan Keselamatan Kerja Lingkungan (K3L) PT. Bukit Asam., Tbk, Unit Pelabuhan Tarahan, Lampung Environmental Work Safety Health Report (K3L) PT. Bukit Asam., Tbk, Tarahan Port Unit, Lampung.
- PT Bukit Asam (2020b) Laporan Triwulan Pengelolaan dan Pemantauan Lingkungan PT. Bukit Asam Unit Pelabuhan Tarahan, Lampung Environmental Management and Monitoring Quarterly Report of PT. Bukit Asam Tarahan Port Unit, Lampung.
- PT Bukit Asam (2021) PT Bukit Asam (Persero) Tbk, http://www.PT Bukit Asam.co.id/en.
- Rahman, M.M., Howladar, M.F. and Faruque, M.O. (2017) 'Assessment of soil quality for agricultural purposes around the Barapukuria coal mining industrial area, Bangladesh: insights from chemical and multivariate statistical analysis', *Environmental Systems Research*, 6(1). Available at: https://doi.org/10.1186/s40068-017-0101-x.
- Rai, A.K. and Paul, B. (2011) 'Degradation of Soil Quality Parameters Due to Coal Mining Operations in Jharia Coalfield, Jharkhand, India', *Journal of Advanced Laboratory Research in Biology*, 2(2), pp. 51–56. Available at: https://ejournal.sospublication.co.in/index.php/jalrb/article/view/63%0Ainternal-pdf://0.0.5.189/63.html.
- Rela, I.Z., Awang, A.H., Ramli, Z., Taufik, Y., Md. Sum, S. and Muhammad, M. (2020) 'Effect of corporate social responsibility on community resilience: Empirical evidence in the nickel mining industry in Southeast Sulawesi, Indonesia', Sustainability (Switzerland), 12(4). Available at: https://doi.org/10.3390/su12041395.
- Ribeiro, J., Suárez-Ruiz, I. and Flores, D. (2016) 'Geochemistry of self-burning coal mining residues from El Bierzo Coalfield (NW Spain): Environmental implications', *International*

- Journal of Coal Geology, 159, pp. 155–168. Available at: https://doi.org/10.1016/j.coal.2016.04.006.
- Ribeiro, J., Suárez-Ruiz, I. and Flores, D. (2020) 'Self-burning coal mining residues – an environmental issue or a source of raw materials?', EGU General Assembly [Preprint].
- Ribeiro, J., Suárez-Ruiz, I., Ward, C.R. and Flores, D. (2016) 'Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain)', *International Journal of Coal Geology*, 154–155, pp. 92–106. Available at: https://doi.org/10.1016/j.coal.2015.12.011.
- Rohelmy, F.A., ZA, Z. and Hidayat, R.R. (2015) 'Effectiveness Of Application Of Environmental Costs In Efforts To Minimize Environmental Impact (Study At PT. Emdeki Utama)', *Jurnal Administrasi Bisnis*, 2(2), pp. 1–10.
- Rusdianasari (2015) 'Air Quality Mapping in Coal Stockpile Environment', *Prosiding Seminar Nasional FIRST*, pp. 1–6.
- Saffari, A., Sereshki, F. and Ataei, M. (2019) 'The simultaneous effect of moisture and pyrite on coal spontaneous combustion using cpt and r70 test methods', *The Mining-Geology-Petroleum Engineering Bulletin*, pp. 1–12. Available at: https://doi.org/10.17794/rgn.2019.3.1.
- Satriawan, M., Liliasari, L., Setiawan, W., Abdullah, A.G. and Rosmiati, R. (2021) 'A Contextual Semi-Assisted Project-Based Learning on Ocean Wave Energy: Pre-service Physics Teachers' Perceptions', *Jurnal Pendidikan Fisika*, 9(1), pp. 1–13. Available at: https://doi.org/10.26618/jpf.v9i1.4386.
- Schwegler, F. (2006) 'Air quality management: A mining perspective', *WIT Transactions on Ecology and the Environment*, 86, pp. 205–212. Available at: https://doi.org/10.2495/AIR06021.
- Setiawan, A.A., Budianta, D., Suheryanto, S. and Priadi, D.P. (2018) 'Review: Pollution due to Coal Mining Activity and its Impact on Environment', *Sriwijaya Journal of Environment*, 3(1), pp. 1–5. Available at: https://doi.org/10.22135/sje.2018.3.1.1-5.
- Swain, B.K., Goswami, S. and Das, M. (2011) 'Impact of Mining on Soil Quality: A Case Study from Hingula Opencast Coal Mine, Angul District, Orissa', VISTAS IN GEOLOGICAL RESEARCH, 10, pp. 77–81. Available at:

- https://www.researchgate.net/publication/317 168417.
- Trianisa, K., Purnomo, E.P. and Kasiwi, A.N. (2020) 'The Influence of the Coal Industry on Air Pollution in the Balance of the World Air Quality Index in India', *Jurnal Sains Teknologi & Lingkungan*, 6(2), pp. 156–168. Available at: https://doi.org/10.29303/jstl.v6i2.154.
- Unanaonwi, O.E. and Amonum, J.I. (2017) 'Effect of mining activities on vegetation composition and nutrient status of forest soil in Benue Cement Company, Benue State, Nigeria', International Journal of Environment, Agriculture and Biotechnology, 2(1), pp. 297–305. Available at: https://doi.org/10.22161/ijeab/2.1.39.
- Wantzen, K.M. and Mol, J.H. (2013) 'Soil erosion from agriculture and mining: A threat to tropical stream ecosystems', *Agriculture* (*Switzerland*), 3(4), pp. 660–683. Available at: https://doi.org/10.3390/agriculture3040660.
- Weng, Z., Mudd, G.M., Martin, T. and Boyle, C.A. (2012) 'Pollutant loads from coal mining in Australia: Discerning trends from the National Pollutant Inventory (NPI)', *Environmental Science and Policy*, 19–20, pp. 78–89. Available at: https://doi.org/10.1016/j.envsci.2012.03.003.

- Xu, J., Ma, N. and Xie, H. (2017) 'Ecological coal mining based dynamic equilibrium strategy to reduce pollution emissions and energy consumption', *Journal of Cleaner Production*, 167, pp. 514–529. Available at: https://doi.org/10.1016/j.jclepro.2017.08.115.
- Yovanda, R., Juniah, R., Yulianita, A., Anaperta, Y.M. and Rahmi, H. (2023) 'Analysis of the Economic Value of Ex-Coal Mining Land Use as Carbon Assimilator', *Jurnal Teknologi Mineral dan Batubara Volume*, 19(1), pp. 47–55. Available at: https://doi.org/10.30556/jtmb.Vol19.No1.2023.1311.
- Yu, C., Wang, X., Pang, K., Zhao, G. and Sun, W. (2020) 'Dynamic Characteristics of a Vibrating Flip-Flow Screen and Analysis for Screening 3 mm Iron Ore', Shock and Vibration, 2020. Available at: https://doi.org/10.1155/2020/1031659.
- Zakir, S. and Juniah, R. (2015) 'Natural Resource Management Policy: A Challenge for Sustainable Develompment in Indonesia', in Adverting a Global Environmental Collapse The Role of Anthropology and Local Knowledge. Cambridge Scholars Publishing, pp. 303–310.