INDICATION OF GRAIN ENLARGEMENT IN DRY GRINDING PROCESS USING A ROD MILL, OBSERVED AT INCREASED MILLING TIME

Authors

  • Sedarta Sedarta Medan Institute of Technology
  • Lismawaty Lismawaty Medan Institute of Technology
  • Mahyuzar Masri Medan Institute of Technology

DOI:

https://doi.org/10.30556/imj.Vol18.No2.2015.291

Keywords:

grain property, size distribution, rod size, milling time, grain enlargement

Abstract

The aim of the study is to determine whether size distribution and grain properties of the milling product can be controlled by rod size, milling time or a combination of both. Milling experiments had been carried out using rod of 9.8, 23.8, and 46.0 cm respectively as well as milling time of 30, 60, 210, 360 and 600 minutes. Grain properties were studied by sieve analysis and binocular microscope. The entire rod sizes and 30-minutes mill- ing time yielded grain enlargement as a result of van der Waals forces among colliding particles with the help of dampness as a binding media. The longer the milling time, the more coalesce the grains. It is also known that the smaller the particles, the lesser the particle density but the brighter the grain appearance. For all combina- tions, grain enlargement took place within size of -60 +100# showing the highest weight proportion in the period of 286.54 minutes.

References

Bai, G., 2005. Low-temperature sintering of nanoscale silver paste for semiconductor device intercon- nection, PhD Dissertation, Virginia Polytechnic Institute, Blacksburg, Virginia.

Bergstrom, L., 2002. Handbook of applied surface and colloid chemistry: Colloidal processing of ceramics, Vol 1, Chapter 9, John Wiley & Sons., Inc. USA, ISBN: 0-471-49083-0, pp. 201-217.

Castellanos, A., 2005. The relationship between attrac- tive interparticle forces and bulk behavior in dry and uncharged fine powders, Advance in Physics, ISSN: 1460-6976, Vol. 54(4), pp. 263-376.

Drzymala, J., 2007. Mineral processing: Foundations of theory and practice of minerallurgy, edition 1st, ISBN: 978-83-7493-362-9.

Elsey, M., Esedoglu, S., and Smereka, P., 2010. Large scale simulation of normal grain growth via diffu- sion generated motion, Department of Mathemat- ics, University of Michigan, Ann Arbor, USA.

Gupta, A. and Yan, D. S., 2006. Mineral processing design: An introduction, 1st ed., Elsevier, Neth- erlands, ISBN-13: 978-0-444-51696-7, p.: 63-97;

-210; 212-233.

Inglethorpe, S. D. J., Morgan, D. J., Highley, D. E. and Bloodworth, A. J.; 1993. Bentonite: Industrial miner- als laboratory manual, British Geological Survey, Technical Report WG/93/20.

King, R. P., 2001. Modeling and simulation of mineral processing system, First Published, Reed Educa- tional and Professional Publishing Ltd, USA, ISBN: 0 7506 4884 8, p. 6-43; 127-212.

Lamec, N. N. S.; 2005. Effects of grinding media shape on ball mill performance, Master thesis at Faculty of Engineering and The Built Environment, University of the Witwatersrand, Johannes-burg, South Africa.

Lekkas, O. A., Mulbock, M., Weiss, B. and Wukovits, W., 2014. Modeling of a sinter planting PROMS with se- lective waste gas recirculation, Advanced Process Modeling Forum, London, United Kingdom.

McKenna, I. M., 2010. Three-dimensional anisotropic and isotropic grain growth simulation with compari- son to experiment, Ph.D. Dissertation, School of Material Science and Engineering, Nothwestern University, Illinois.

Mobius, M. E., Lauderdale, B. E., Nagel, S. R. and Jaeger, H. M., 2001. Size separation of granule particles: Brazil-nut effect, James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.

Nichols, G., Byard, S., Bloxham, M. J., Botterill, J., Dawson, N. J., Nennis, A., Diar, V., North, N. C. and Sherwood, J. D., 2002. A review of the terms agglomeration and aggregate with a recommenda- tion for nomenclature used in powder and particle characterization, Journal of Pharmaceutical Sci- ence, Vol. 91(10).

Olevsky, E. A., 2011. Sintering theory: Brief introduction,

San Diego State University, California, USA.

Pietsch, W., 1991. Size enlargement by agglomera- tion, John Wiley & Sons Ltd., New York, ISBN: 0 471 92991 3.

Schofield, A.and Worth, P., 1968. Critical state: soil mechanics, in www-civ.eng.cam.ac.uk/geotech_ new/.../schofield_wroth_1968.pdf.

Sedarta, 2012. Pengaruh ukuran butir terhadap angle of repose pada batugamping, Jurnal Geolit, ISSN: 2252-4363, Vol. 2(2), p.: 83-95.

Sedarta and Munthe, I., 2013. Pengaruh waktu reduksi terhadap distribusi ukuran produk pada rod mill, Prosiding: Seminar Nasional Peran Teknologi di Era Globalisasi ke-2, Institut Teknologi Medan, p. 403-412.

Sedarta, List, J., Hutajulu, B.J., 2014. The Influence of milling time on the product grain size distribution and the reduction ratio of a ball mill, Journal of Geolit, ISSN: 2252-4363, Vol. 3(2), p. 49-62.

Snow Richard H., Allen Terry, Ennis Bryan J., Lister James D., 1997. Size reduction and size en- largement. In: Perry RH. (ed.), Perry’s chemical engineering’s’ handbook, 7th edition, McGraw-Hill, ISBN: 0-07-115448-5, USA, p. 1603-1691.

Survacy, E., 2008. Sintering of ceramics: Theory and practice, Anadolu University, Department of Mate- rial Science and Engineering, 26480 Eskisehir, Turkey.

Tomas Jürgen, 2007. Adhesion of ultrafine particles – A micromechanical approach, Chemical Engineering Science 63 (2007) 1997-2010, Elsevier.

USGS, 2014. Mineral commodity summaries 2014,

ISBN 978-1-4113-3785-7

Wang, Y. and Forsberg, E., 2013. International overview and outlook on comminution technology, Depart- ment of Chemical Engineering and Geosciences, Lulea, Sweden, pure.ltu.se/ portal/fi

Rapport.

Downloads