Of the 17 rare earth elements (REEs), 15 belong to the chemical group called lanthanides, plus yttrium and scandium. The lanthanides consist of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. Cerium is one of the most abundant REEs, comprises more of the earth’s crust than copper or lead. At least, there are 29 potential REE-bearing minerals. Basnasite, monazite and xenotime are among them and serve as the most exploited minerals. The REEs are mostly applied for high technology application such as computer, telecommunication, nuclear and sophisticated instruments for exploring the outer space.


REEs, lanthanides, cerium, bastnasite, monazite, xenotime, high technology

Full Text:



Ali, M.A., 2012. Mineral chemistry of monazite-(Nd), xenotime-(Y), apatite, fluorite and zircon host- ing in lamprophyre dyke in Abu Rusheid area, South Eastern Desert, Egypt. Geologija 55/1, pp. 93–106.

Badwal, S.P.S., Daniel F., Fabio, C., Munnings, C., Kimpton, J. and Drennan, J., 2013. Structural and microstructural stability of ceria - gadolinia electrolyte exposed to rducing environments of hig temperature fuel cells. J. Mater. Chem. A 1 (36): 10768. Royal society of Chemistry.

Bau, M.l and Dulski P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, v. 79, Issues 1-2, pp. 37-55, Elsevier

Castor, B. and Hedrick, J.B., 2006. Rare earth elements in industrial minerals and rocks. Edited by Jessica Elzea Kogel, Nikhil C. Trivedi and James M. Barker. Society for Mining, Metallurgy and Exploration. pp. 769-792.

Corn, T. R., 2010. Optical and luminescence proper- ties of erbium, ytterbium, and terbium doped in aluminum nitride. Thesis for Master’s degree, Department of Physics And Astronomy, Ball State University Muncie, Indiana

Danford, K. R., 2014. Samarium: Chemical properties, occurrence and potential applications. NOVA Sci- ence publisher.

Gray, T., 2010. The elements. Black Dog & Leventhal Pub. ISBN 1579128955.

Gupta, C. K. and Krishnamurthy, N. 2005. Extractive metallurgy of rare earths. CRC Press. Boca Raton London New York Washington, CRC Press. ISBN 0-415-33340-7.

Gupta, C. K., Mukherjee, P.S., Meikap, A. K. and Jana, P.C., 2014. Effect of samarium nanoparticles on the electrical transport properties of polyaniline. Adv. Nat. Sci: Nanosci.Nanotechnol., v. 5, n. 2. IOP Science.

Harbison, R.D., Bourgeois, M.M. and Giffe T.J., 1998. Hamilton and Hardy’s industrial toxicology. John Willey & Sons. p. 200.

Hsing-I Hsiang and Ga-Pon Lai, 2005. Microstructure evolution and electric properties with addition amounts of dysprosium (DyO1.5) in (BaCa)(TiZr) O3 ceramics. Materials Science and Engineering

B. 123, pp. 69–73. Elsevier. ac- cessed on December 12, 2014 at 08.00 am., accessed on December 24, 2014 at 2.00 pm., accessed on January 2, 2015 at 9.00 am. sc.htm#ixzz3I3nkNRgU, accessed on January 2, 2015 at 10.00 am. sc.htm#ixzz3I3nkNRgU, accessed on January 2, 2015 at 9.00 am., accessed on January 12, 2015 at 1.00 pm.

http ://, ac- cessed on December 12, 2014 at 11.00 am.

Lee, S.S., Song, W., S., Cho, M., Puppala, H., Nguyen, P., Zhu, H., Segatori, L. and Colvin, V.L., 2013. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano, v. 7, n. 11, pp. 9696-9703.

Lide, D.R. 2004. CRC Handbook of chemistry and phys- ics. Boca Raton: CRC Press. pp. 4–28.

Misiak, M., Prorok, K., Cichy, B., Bednarkiewicz, A. and Stręk, W., 2013. Thulium concentration quenching in the up-converting a-Tm3+/Yb3+ NaYF4 colloidal nanocrystals. Optical Materials, v. 35, pp. 1124- 1128. Elsevier.

Neikov, O.D., Murashova, I.B., Yefimov, N.A., Naboy- chenko, S., 2009. Handbook of non-ferrous metal powders: technologies and applications. Elsevier, pp. 501.

Paradis, P.F., Ishikawa, T., Koike, N. and Watanabe,Y. 2007. Physical properties of liquid terbium mea- sured by levitation techniques. Journal of Rare Earth, v. 25, Issue 6, Elsevier.

Rafi ddin, M., Mueller, E. and. Grosvenor, A. P. 2014. X- ray spectroscopic study of the electronic structure of monazite- and xenotime-type rare-earth phos- phates. J. Phys. Chem C, v. 118, n. 31 pp.18000- 18009. American Chemical Society.

Rodliyah, I., Rochani, S. and Wahyudi, T., 2015. Extrac- tion of rare aearth metals from Monazite mineral using acid method. Indonesian Mining Journal, v. 19, n. 1. p 39-45

Röyset, J., 2007. Scandium In aluminium alloys: physi- cal metallurgy, properties and applications. Metal- lurgical Science and Technology. v.2, n. 2.

Settouti, N. and Aourag, H., 2015. A study of the physi- cal and mechanical properties of lutetium com- pared with those of transition metals: A data mining approach. JOM, v. 67, Issue 1, pp 87-93.

Lee, Seung Soo, Song, Wensi, Cho, Minjung,. Puppala, H.L., Nguyen, Phuc, Zhu, Huiguang, Segatori, L. and Colvin, V.L., 2013. Antioxidant properties of cerium oxide nanocrystals as a function of nano- crystal diameter and surface coating. ACS Nano, v. 7, n. 11, pp. 9696-9703.

Suprapto, S. J. 2009, Tinjauan tentang unsur tanah jarang. Buletin Sumber Daya Geologi. v. 4, n. 1.

Tarnavich, V. V.; Volegov, A. S.; Lott, D.; Mattauch, S.; Vorobiev, A. A.; Oleshkevych, A. and Grigoriev, S. V. 2014. Structural and magnetic properties of the holmium-yttrium superlattice. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, v. 8, Issue 5, pp. 976-982.

Tezuka, Keitaro, Yoshimi Tokuhara, Makoto Wake- shima, Yue Jin Shan, Hideo Imoto and Yukio Hinatsu, 2013. Crystal Structures and Properties of Europium Aluminum Oxynitride Eu2AlO3.75N0.1 and Europium Aluminum Oxide EuAl2O4. Inorg. Chem., v. 52, n. 22, pp. 12972–12979

Vovk , R.V., N.R. Vovk, G.Ya. Khadzhai, I.L. Goulatis, A. Chroneos, 2014. Effect of praseodymium on the electrical resistance of YВа2Сu3О7−δ single crystals. Solid State Communications, v. 190, pp. 18-22. Elsevier.

Watt, G.R., 1995. High-thorium monazite-(Ce) formed during disequilibrium melting of metapelites under granulite-facies conditions. Mineralogical Maga- zine, v. 59, pp. 735-743 Mineralogical Society of America.

Wahyudi, T., Sutanto, A., Subianto, D., Jatmiko, Kary- ono, Suradi, Pendi, S., 2009. Pembuatan Material Baku Sekunder Percontoh Mineral Kasiterit dan Xenotime untuk Pengujian SEM dan Mikroskop Optik. Laporan Penelitian. Unpubished. Puslitbang Teknologi Mineral dan Batubara, Badan Litbang Energi dan Sumber Daya Mineral, Departemen Energi dan sumber Daya Mineral.

Yunxiang Ni, Hughes, J.M. and Mariani, A.N., 1993. The atomic arangement of bastnasite-(Ce), Ce(CO3) F, and structural elements of synchysite-(Ce), rontgenite-(Ce), and parisite-(Ce). American Min- eralogist, v. 78, pp., 415-418. Mineralogical Society of America.

Zholobak, N.M., Ivanov, V.K., Shcherbakov, A.B., Shaporev, A.S., Polezhaeva, O.S., Baranchikov, A.Y., Spivak, N.Y. Tretyakov, Yu.D., 2011. “UV- shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions”. Journal of Photochemistry and Photobiology B: Biology 102 (1): 32–38.


  • There are currently no refbacks.

Copyright (c) 2017 Indonesian Mining Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.