Solihin Solihin, Pratama Arinaldo, Nanda Sari Dewi, Haryadi Permana



Indonesia has large amount of laterite deposits located in Southeast Sulawesi. The laterite contains significant amount of iron. The ore has been processed through high temperature. The high temperature consumes a lot of energy and releases a lot of carbon dioxide. The low temperature of the process is simple and needs less energy. Leaching the ore is the important stage in low temperature which determines the recovery of valuable metal from the ore. This work observes the kinetic aspect of iron dissolution in the process based on the shrinking core model. The data of iron dissolution at temperature 30, 50, 70 and 90°C are plotted into chemical reaction control and diffusion control equations. The result shows that at 30 and 50°C, the whole leaching process is controlled by the rate balance between chemical reaction and diffusion, whereas at 70 and 90 °C, the reaction is controlled by diffusion.


laterite, iron, hydrometallurgy, leaching, kinetic

Full Text:



Ashcroft, G. (2013) Nickel laterites: The world’s largest source of nickel, Geology for Investorsestor. Available at: (Accessed: 2 August 2018).

Butt, C. R. M. and Cluzel, D. (2013) ‘Nickel laterite ore deposits: Weathered serpentinites’, Elements, 9(2), pp. 123–128. doi: 10.2113/gselements.9.2.123.

Habashi, F. (1999) Kinetics of metallurgical processes. 1st Ed. Canada: Metallurgie Extractive Quebec.

Ishikawa, A. et al. (2007) ‘Multiple generations of forearc mafic–ultramafic rocks in the Timor–Tanimbar ophiolite, eastern Indonesia’, Gondwana Research, 11(1–2), pp. 200–217. doi: 10.1016/

Kadarusman, A. et al. (2004) ‘Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia’, Tectonophysics, 392(1–4), pp. 55–83. doi: 10.1016/j.tecto.2004.04.008.

Lee, H. Y., Kim, S. G. and Oh, J. K. (2005) ‘Electrochemical leaching of nickel from low-grade laterites’, Hydrometallurgy, 77(3–4), pp. 263–268. doi: 10.1016/j.hydromet.2004.11.011.

van Leeuwen, T. M. and Pieters, P. E. (2011) ‘Mineral deposits of Sulawesi’, in Proceedings of the Sulawesi Mineral Resources 2011 SEMINAR MGEI‐IAGI. Manado, pp. 1–109. doi: 10.13140/2.1.3843.2322.

Li, J. et al. (2009) ‘Effect of pre-roasting on leaching of laterite’, Hydrometallurgy, 99(1–2), pp. 84–88. doi: 10.1016/j.hydromet.2009.07.006.

Ma, B. et al. (2013) ‘Comprehensive utilization of Philippine laterite ore, part 1: Design of technical route and classification of the initial ore based on mineralogical analysis’, International Journal of Mineral Processing, 124, pp. 42–49. doi: 10.1016/j.minpro.2013.08.003.

MacCarthy, J. et al. (2015) ‘Acid leaching and rheological behaviour of a siliceous goethitic nickel laterite ore: Influence of particle size and temperature’, Minerals Engineering, 77, pp. 52–63. doi: 10.1016/j.mineng.2014.12.031.

Marsh, E. E. and Anderson, E. D. (2011) Ni-Co laterite deposits. 2011th–1259th edn. Reston: U.S. Geological Survey. doi: 10.3133/ofr20111259.

Mbaya, R. K. K., Ramakokovhu, M. M. and Thubakgale, C. K. (2013) ‘Atmospheric pressure leaching application for the recovery of copper and nickel from low-grade sources’, in The Southern African Institute of Mining and Metallurgy (Base Metals Conference 2013). Johannesburg: The Southern African Institute of Mining and Metallurgy, pp. 255–268.

Moe’tamar (2007) ‘Inventarisasi endapan nikel di Kabupaten Konawe, Provinsi Sulawesi Tenggara’, in Prosiding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan. Bandung: Pusat Sumber Daya Geologi, pp. 1–14. Available at: 2007/LOGAM/Logam_Inventarisasi-Nickel_Konawe_SULTRA.pdf.

Monnier, C. et al. (1999) ‘Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): Consequences for the Cenozoic evolution of the north Australian margin’, Mineralogy and Petrology, 65(1–2), pp. 1–28. doi: 10.1007/BF01161574.

Nelson, L. R. et al. (2007) ‘Role of operational support in ramp-up of the FeNi-II furnace at PT Antam in Pomalaa’, in International Conference on Innovations in the Ferro Alloy Industry (IFACON XI). New Delhi: Macmillan India, pp. 798–813.

Olanipekun, E. O. (2000) ‘Kinetics of leaching laterite’, International Journal of Mineral Processing, 60(1), pp. 9–14. doi: 10.1016/S0301-7516(99)00067-8.

Permana, H., Girardeau, J., et al. (2005) ‘Emplacement mechanism of the Cyclops ophiolite, Western Papua (Indonesia)’, Majalah Geologi Indonesia, 20(2), pp. 103–115.

Permana, H., Soeria-atmadja, R., et al. (2005) ‘Weyland ophiolite of Nabire district, Western Papua, Eastern Indonesia: Origin and tectonic consequences’, Majalah Geologi Indonesia, 20(2), pp. 90–102.

Rice, N. M. (2016) ‘A hydrochloric acid process for nickeliferous laterites’, Minerals Engineering, 88, pp. 28–52. doi: 10.1016/j.mineng.2015.09.017.

Solihin et al. (2013) ‘Percobaan proses leaching dan bioleaching pada bijih nikel kadar rendah Sulawesi’, in Prosiding Seminar Metalurgi dan Material, pp. 95–99.

Solihin (2015) ‘Synthesis of nickel containing pig iron (NCPI) by using limonite type of lateritic ore from South East Sulawesi’, Riset Geologi dan Pertambangan, 25(1), pp. 31–35. doi: 10.14203/risetgeotam2015.v25.183.

Solihin, Mubarok, M.Z., Hapid, A., Firdiyono, F. (2015), “The Processing of Low Grade Nickel Ore from South East Sulawesi”,Advanced Materials Research. 1112 pp. 493-496. doi: 10.4028/

Sukamto, R. (2002) ‘Peta batuan ofiolit dan bancuh. Skala 1:10.000. 000’. Bandung: Pusat Survey Geologi, p. 1. Available at: Batuan Ofiolit dan Bancuh.

Takeno, N. (2005) Atlas of Eh-pH diagrams: Intercomparison of thermodynamic databases. Tokyo. Available at:


  • There are currently no refbacks.

Copyright (c) 2019 Indonesian Mining Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.