SYNTHESIS AND CHARACTERIZATION OF GAMMA ALUMINA AND ITS ADSORPTION CAPABILITY TEST FOR POMALAA MAGNESIUM LATERITE, SOUTHEAST SULAWESI

Authors

  • Titin Siti Fatimah R&D Center for Mineral and Coal Technology Jalan Jenderal Sudirman 623 Bandung Phone. (+6222) 6030483. Fax. (+6222) 6003373 e-mail:tisif.tsf@gmail.com Department of Chemistry Faculty of Mathematics & Natural Science Padjadjaran University Jalan Raya Bandung Sumedang Km. 21 Phone/Fax. (+6222) 7794391
  • Atiek Rostika Noviyanti Department of Chemistry Faculty of Mathematics & Natural Science Padjadjaran University Jalan Raya Bandung Sumedang Km. 21 Phone/Fax. (+6222) 7794391
  • Juliandri Juliandri Department of Chemistry Faculty of Mathematics & Natural Science Padjadjaran University Jalan Raya Bandung Sumedang Km. 21 Phone/Fax. (+6222) 7794391
  • Solihudin Solihudin Department of Chemistry Faculty of Mathematics & Natural Science Padjadjaran University Jalan Raya Bandung Sumedang Km. 21 Phone/Fax. (+6222) 7794391

DOI:

https://doi.org/10.30556/imj.Vol22.No1.2019.977

Keywords:

adsorption, gamma alumina, leaching, isotherm, sol-gel

Abstract

Based on variations in calcination temperature, gamma alumina has successfully been made using a simple sol-gel method for Pomalaa magnesium-laterite adsorption from the South East of Sulawesi. The laterite leached by sulfuric acid was then precipitated by ammonia, to make the magnesium was separated from its main impurities (Si, Fe and Al). Temperature variations at 500, 650, 800 and 950 °C in gamma alumina making formed the gamma alumina phase while the alpha alumina phase was formed at 1100 °C. The higher calcination temperature the lower the specific surface area respectively from 196.385, 156.239, 105.725, 96.134 and 15.396 (m2/g). This results in decreasing the magnesium of the laterite 9.04, 8.70, 8.09, 6.39 and 0.29 (mg/L) respectively. The 800 °C-calcination gamma alumina has the highest volume of the pore, namely 0.3265 mL/g and the radius of 61.76 Å. The gamma alumina isotherm curve is type IV. The SEM-EDS test shows an aggregation spherical shape. Gamma alumina was detected to adsorb Mg laterite. The X-ray mapping of SEM-EDS test shows even distribution between gamma alumina, magnesium and nickel. The highest adsorption is retained by GA-800/3 sample, namely 81.31 %.

References

Adamson, A. W. (1990) Physical chemistry of surfaces. 5th Ed. New York: Wiley.

Adans, Y. F., Martins, A. R., Coelho, R. E., Virgens, C. F. das, Ballarini, A. D. and Carvalho, L. S. (2016) ‘A simple way to produce γ-alumina from aluminum cans by precipitation reactions’, Materials Research, 19(5), pp. 977–982. doi: 10.1590/1980-5373-MR-2016-0310.

Aghamohammadi, S., Haghighi, M. and Karimipouret, S. (2013) ‘A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane’, Journal of Nanoscience and Nanotechnology, 13(7), pp. 4872–4882. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23901507#.

Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M. C. and Sharma, Y. C. (2017) ‘Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions’, Arabian Journal of Chemistry, p. (Inpress paper) 1. doi: 10.1016/j.arabjc.2016.12.016.

Bhatnagar, A., Kumar, E. and Sillanpää, M. (2010) ‘Nitrate removal from water by nano-alumina: Characterization and sorption studies’, Chemical Engineering Journal, 163(3), pp. 317–323. doi: 10.1016/j.cej.2010.08.008.

Butt, C. R. M. and Cluzel, D. (2013) ‘Nickel laterite ore deposits: Weathered serpentinites’, Elements, 9(2), pp. 123–128. doi: 10.2113/gselements.9.2.123.

Chinnakoti, P., Chunduri, A. L. A., Vankayala, R. K., Patnaik, S. and Kamisetti, V. (2017) ‘Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies’, Applied Water Science, 7(5), pp. 2413–2423. doi: 10.1007/s13201-016-0437-9.

Dahlan, Y., Pramusanto, Saleh, N., Ardha, I. G. N., Aziz, M., Amalia, D., Rodiyah, I., Setiyatmoko, E., Sarjono, Pendi, S., Somantri, S. and Sulistiani, L. (2007) Peningkatan kadar nikel dari bijih nikel laterit Pomalaa, Sulawesi Tenggara, Jurnal Teknologi Mineral dan Batubara. Bandung: Puslitbang tekMIRA.

Eliassi, A. and Ranjbar, M. (2014) ‘Application of novel gamma alumina nano structure for preparation of dimethyl ether from methanol’, International Journal of Nanoscience and Nanotechnology, 10(1), pp. 13–36. Available at: http://www.ijnnonline.net/article_5021.html.

Gulicovski, J. J., Čerović, L. S. and Milonjić, S. K. (2008) ‘Point of zero charge and isoelectric point of alumina’, Materials and Manufacturing Processes, 23(6), pp. 615–619. doi: 10.1080/10426910802160668.

Harfani, R. (2009) Sintesis katalis padatan asam gamma alumina terfosfat (γ-Al2O3/PO4) dan digunakan untuk sintesis senyawa metil ester asam lemak dari limbah produksi margarin. Universitas Indonesia. Available at: http://lib.ui.ac.id/file?file=digital/20181874-S30537-Retno Harfani.pdf.

Liu, K., Chen, Q. and Hu, H. (2009) ‘Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore’, Hydrometallurgy, 98(3–4), pp. 281–286. doi: 10.1016/j.hydromet.2009.05.015.

Luo, W., Feng, Q., Ou, L., Zhang, G. and Chen, Y. (2010) ‘Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure’, Minerals Engineering, 23(6), pp. 458–462. doi: 10.1016/j.mineng.2009.10.006.

Mahmoudi, M. R. H., Kazemenini, M., Rashidi, A. M., Zarkesh, J. and Khorasheh, F. (2012) ‘Comparison of regular gamma and nano structured alumina utilized in the Fischer Tropsch catalyst from porasimetric point of view’, in Proceedings of the 4th international conference on nanostructure (ICNS4). Kish Island: Springer.

Márquez‐Alvarez, C., Žilková, N., Pérez‐Pariente, J. and Čejka, J. (2008) ‘Synthesis, characterization and catalytic applications of organized mesoporous aluminas’, Catalysis Reviews, 50(2), pp. 222–286. doi: 10.1080/01614940701804042.

Paglia, G., Buckley, C. E., Rohl, A. L., Hart, R. D., Winter, K., Studer, A. J., Hunter, B. A. and Hanna, J. V. (2004) ‘Boehmite derived γ-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ‘-alumina’, Chemistry of Materials, 16(2), pp. 220–236. doi: 10.1021/cm034917j.

Poursani, A. S., Nilchi, A., Hassani, A. H., Shariat, M. and Nouri, J. (2015) ‘A novel method for synthesis of nano-γ-Al2O3: Study of adsorption behavior of chromium, nickel, cadmium and lead ions’, International Journal of Environmental Science and Technology, 12(6), pp. 2003–2014. doi: 10.1007/s13762-014-0740-7.

Prasetyo, P. (2016) ‘Sumber daya mineral di Indonesia khususnya bijih nikel laterit dan masalah pengolahannya sehubungan dengan UU Minerba 2009’, in Prosiding SEMNASTEK 2016. Jakarta: Fakultas Teknik Universitas Muhammadiyah Jakarta, p. TM-008 1-10. Available at: https://jurnal.umj.ac.id/index.php/semnastek/article/view/807.

Shayesteh, M., Afarani, M. S., Samimi, A. and Khorram, M. (2013) ‘Preparation of γ-Al2O3 and prioritization of affecting factors on the crystallite size using Taguchi method’, Transport Phenomena in Nano and Micro Scales, 1(1), pp. 45–52. doi: 10.7508/TPNMS.2013.01.005.

Downloads

Published

2019-04-30