PENENTUAN WILAYAH USAHA PERTAMBANGAN MENGGUNAKAN METODE FUZZY K-MEAN CLUSTERING BERBASIS SISTEM INFORMASI GEOGRAFI

NANA SURYANA

Puslitbang Teknologi Mineral dan Batubara Jalan Jenderal Sudirman 623, Bandung 40211 Telp. 022 6030483, Fax. 022 6003373 e-mail: nanans@tekmira.esdm.go.id

SARI

Fuzzy K-Means Clustering adalah suatu metode analisis pada teknik statistik yang merupakan pengembangan dari metode K-Means Clustering. Prinsip dari metode tersebut adalah proses pengelompokan data yang memiliki tingkat kemiripan yang tinggi satu data dengan lainnya ke dalam kluster-kluster dan sangat berbeda dengan data yang terdapat pada kluster lain.

Dari penerapan metode tersebut pada penentuan wilayah usaha pertambangan akan menghasilkan segmentasi wilayah usaha pertambangan yang dapat menggambarkan karekteristik bahan galian pada setiap kelompoknya, sehingga selain dapat mempermudah penetapan rencana umum tata ruang daerah dalam pengalokasian wilayah usaha pertambangan bahan galian, hasil segmentasi ini dapat mempermudah peminat dan pelaku usaha tambang memilih wilayah kegiatan usaha tambang yang prospek. Pengelompokan data pada metode ini dilakukan terhadap data A-spasial yang merupakan keluaran atau hasil analisis spasial dengan teknik tumpang tindih pada sistem informasi geografi (SIG). Dari analisis dengan metode *Fuzzy K-Means Clustering* dihasilkan delienasi untuk wilayah pertambangan di Kabupaten Trenggalek seluas 68.160 Ha.

Sebagai studi kasus penerapan metode ini dilakukan pada penentuan wilayah usaha pertambangan di Kabupaten Trenggalek, Provinsi Jawa Timur.

Kata kunci : Fuzzy K-Mean Clustering, SIG, wilayah usaha pertambangan, spasial & A-spasial

ABSTRACT

Fuzzy K-Means Clustering is an analysis method that based on statistical techniques. The method is developed from K-Means Clustering method. Its principle is clustering data that have high similarity level one another into clusters. One cluster is different with another. Method application on area determination of mining operation yield segmentation of business area that illustrates mineral characteristics within the cluster. This will help business expertise to selectively choose the related and prospective mine business. Data grouping is conducted to a-spatial data result from spatial analyses by overlapping technique in GIS. A case study using Fuzzy K-Means Clustering is conducted to delineate 68.160 Ha of mine area at Trenggalek Province

Keywords: Fuzzy K-Mean Clustering, GIS, mining area, spatial & A-spatial

PENDAHULUAN

Berbagai metode statistik dapat digunakan untuk menganalisis data yang mempunyai karakteristik yang khas, dan salah satu metode tersebut adalah *Fuzzy K-Mean Clustering*. Metode itu sendiri pada proses analisisnya mengelompokkan data yang mempunyai kemiripan satu sama lain ke dalam kluster-kluster (kelompok data yang mempunyai kemiripan yang tinggi). Metode ini merupakan pengembangan dari metode *K-Mean Clustering* yang lebih fleksibel dan memiliki toleransi terhadap data yang tidak tepat.

Potensi bahan galian mempunyai karakteristik yang khas yang dalam pemanfaatannya sering menghadapi kendala batas wilayah, khususnya pada saat dilakukan penyusunan tata ruang suatu daerah dimana potensi ini berada. Oleh karena itu perlu adanya suatu pemecahan masalah yang bisa memberikan kepastian tentang batas wilayah dari potensi tersebut. Pemanfaatan metode Fuzzy K-Mean Clustering dapat dijadikan salah satu untuk memecahkan masalah, khususnya dalam mengelompokan bahan galian berdasarkan karakteistik yang dipunyai oleh masing-masing bahan galian.

Pemanfaatan metode tersebut di atas, sangat berkaitan erat dengan diberlakukannya Undang-Undang No. 4 Tahun 2009, tentang Pertambangan Mineral dan Batubara yang membawa arti penting pada penataan ruang kawasan pertambangan. Diamanatkan oleh undang-undang tersebut bahwa untuk terlaksananya kegiatan usaha tambang harus terletak pada wilayah pertambangan (WP), dimana WP tersebut merupakan bagian dari tata ruang nasional, sehingga daerahdaerah yang mempunyai potensi bahan galian diharuskan menentukan WP terlebih dahulu sebelum adanya kegiatan usaha tambang (wilayah usaha tambang, wilayah pertambangan rakyat atau wilayah pencadangan negara).

Pada tulisan ini digunakan metode *Fuzzy K-mean clustering* dan fuzzy linear diskriminan serta sistem informasi geografi sebagai basis dalam menganalisis data spasial, guna menentukan wilayah potensi bahan galian yang memungkinkan untuk ditetapkan sebagai wilayah pertambangan. Sebagai studi kasus penerapan metode tersebut dilakukan penentuan peruntukan lahan usaha tambang bahan galian (khusus untuk bahan galian yang dahulu disebut dengan bahan galian Golongan C) di Kabupaten Trenggalek, Provinsi Jawa Timur.

METODOLOGI

Dalam penerapan metode Fuzzy K-Mean Clustering untuk penetapan wilayah usaha pertambangan dilakukan langkah-langkah sebagai berikut:

- Persiapan bahan; pengadaan peta tematik digital (peta geologi, RTRW, sebaran potensi bahan galian, kemiringan lereng, ketinggian, dlsb.) daerah Kabupaten Trenggalek, baik yang didapat dari Dinas Pertambangan ataupun dari Bapeda setempat, ataupun langsung melakukan pemetaan di lapangan. Peta tematik tersebut adalah peta administrasi, peta penggunaan tanah, peta kemiringan, peta ketinggian, peta geologi dan peta potensi bahan galian.
- Analisis data spasial; menggunakan perangkat lunak SIG (MapInfo) dengan metode tumpang susun layer (operasi erasing, buffering dan splitting).
- Analisis data a-spasial; dengan menerapkan teknik statistik metode Fuzzy K-Mean Clustering dan fuzzy linier diskriminan.

Analisis Spasial Pada Sistem Informasi Geografi

Dalam analisis spasial, tahap pertama yang dilakukan adalah penetapan peta dasar yang akan dianalisis sebagai *primary layers*. Tahap selanjutnya adalah penetapan peta tematik lainnya sebagai parameter aspek fisik yang berpengaruh (*drived layers*), yaitu dengan cara menggunakan fungsi *select* atau *query* yang tersedia pada perangkat lunak SIG, serta mengacu pada kriteria yang telah dirumuskan. Bila parameter aspek fisik tidak berbentuk poligon (seperti: segmen garis, titik, dan lain-lain), sebelumnya perlu dilakukan analisis antara yaitu dengan menggunakan fungsi *buffer* terhadap parameter tersebut untuk mendapatkan *interpreted layers*.

Analisis spasial dilakukan dengan metode tumpang susun (*overlay*), yang merupakan fungsi atau fasilitas analisis yang sangat efektif dan umum terdapat pada perangkat lunak SIG. Pada tahapan analisis ini, peta dasar (*primary layers*) ditumpang-susunkan dan diuji terhadap setiap *drived layers* dan *interpreted layers* dengan menggunakan operator *boolean*.

Analisis Data A-spasial dengan Metode Fuzzy K-Means Clustering dan Fuzzy Linear Discriminant

Metode fuzzy k-means clustering digunakan untuk menghasilkan segmentasi obyek yang menggambarkan karekteristik obyek tersebut pada setiap kelompoknya. Segmentasi ini memungkinkan pengelompokkan terhadap suatu obyek yang memiliki batas yang samar, bahkan seringkali tumpang tindih (overlap). Sedangkan untuk memperlihatkan posisi antar kelompok yang memiliki batas samar digunakan analisis fuzzy linear discriminant.

Analisis yang digunakan memerlukan skala pengukuran minimal interval, tetapi data yang ada memiliki skala pengukuran ordinal Sharma (1996). Untuk mengatasi data ordinal agar dapat digunakan dalam menghitung jarak, maka perlu dilakukan transformasi sebelum dilakukan analisis.

Langkah-langkah dalam menentukan segmentasi dan positioning lahan usaha tambang bahan galian industri, yaitu sebagai berikut:

 Mentransfomasi data lahan usaha tambang bahan galian industri di Kabupaten Trenggalek yang memiliki skala pengukuran ordinal menjadi interval menggunakan persamaan Kaufman dan Rousseeuw (1990):

$$r_{if} \in \left\{1, \dots, M_f\right\} \dots (1)$$

dimana r_{if} merupakan rangking obyek ke i variabel ke f dan M_f merupakan ranking terbesar dalam variabel ke f.

Kemudian transformasikan r_{if} ke dalam interval, sehingga jarak dalam setiap variabel [0,1] dengan mengubah obyek ke i dalam variabel ke f dengan persamaan:

$$Z_{if} = \frac{r_{if} - 1}{M_f - 1} \dots (2)$$

Penulis menggunakan software **Minitab** untuk menentukan rangking dan software **Excel** untuk mentransformasi rangking menjadi interval.

 Menentukan segmentasi dengan menggunakan Fuzzy K-Means. Adapun algoritma Fuzzy K-Means menurut Graepel (1998) adalah sebagai berikut:

Langkah 1 : Tentukan banyak klaster, nilai *centroid* utama (*prototype*) **C**_i, nilai

 $\varepsilon > 0$

Langkah 2 : Hitung derajat keanggotaan berdasarkan persamaan:

$$m_{ij} = \frac{d_{ij}^{2/(\phi-1)}}{\sum_{l=1}^{k} d_{il}^{2/(\phi-1)}} = 1, 2,...,n; j = 1, 2,..., k(3)$$

Langkah 3: Hitung fungsi obyektif dengan menggunakan persamaan:

$$J(\mathbf{M}, \mathbf{C}) = \sum_{i=1}^{n} \sum_{i=1}^{k} m_{ij}^{\phi} d_{ij}^{2} \qquad (4)$$

dimana:

$$\sum_{i=1}^{k} m_{ij} = 1 \quad i = 1, 2, ..., n$$

$$\sum_{i=1}^{n} m_{ij} > 0 \ j=1, 2, ..., k$$

$$m_{ii} \in \{0,1\}$$

$$d_{ii}^2 = (x_i - c_i)^T \mathbf{A}(x_i - c_i) \dots (5)$$

dimana **A** merupakan matrik normal jarak, matrik identitas untuk jarak *Euclidean* dan *invers* dari matrik varian kovarian dari **X** untuk jarak Mahalanobis.

Langkah 4 : Hitung centroid baru dengan persamaan:

$$\mathbf{C}_{j} = \frac{\sum_{i=1}^{n} m_{ij}^{\phi} x_{i}}{\sum_{i=1}^{n} m_{ij}^{\phi}}$$
 (6)

Indeks kekaburan adalah untuk mengukur kesulitan dalam menginterpretasi lokasi klasifikasi. Menurut Burrough dan McDonnell (1998) Indeks kekaburan adalah ukuran dari derajat tumpang tindih kelas dalam ruang atribut. Indeks kekaburan dapat dihitung dengan:

$$CI = 1 - (m[\max] - m[\max 2])$$
(7)

Langkah 5 : Perbarui keanggotaan dan fungsi obyektifnya

Langkah 6: Jika

maka berhenti, jika tidak kembali ke langkah 4.

3. Menentukan berapa banyak klaster optimal yang terbentuk dengan menggunakan persamaan

$$FPI = 1 - \frac{kF - 1}{k - 1}$$
(8)

dimana F adalah koefisien pembagi:

$$F = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{k} m_{ij}^{2}$$
 (9)

Normalised Classification Entropi (NCE) atau dapat juga disebut Modified Partition Entropy (MPE) didefinisikan sebagai berikut:

$$NCE = \frac{H}{\log k} \tag{10}$$

4. Menentukan posisi dengan menggunakan Fuzzy Linear Discriminant Analysis dengan menggunakan persamaan

$$\mathbf{z}_i = \mathbf{c}_j^T \mathbf{e}_i \tag{13}$$

Dengan menggunakan software FuzMe (Fuzzy K-Means with Ekstragrade Version 3.5b) untuk menentukan segmentasi, menentukan banyak klaster optimal, dan menentukan posisi lahan usaha tambang bahan galian industri di Kabupaten Trenggalek dengan banyak klaster antara 2 sampai 5 klaster, algoritma yang digunakan Fuzzy K-Means dan ukuran jarak yang digunakan adalah Squared Euclidean Distance pada persamaan.

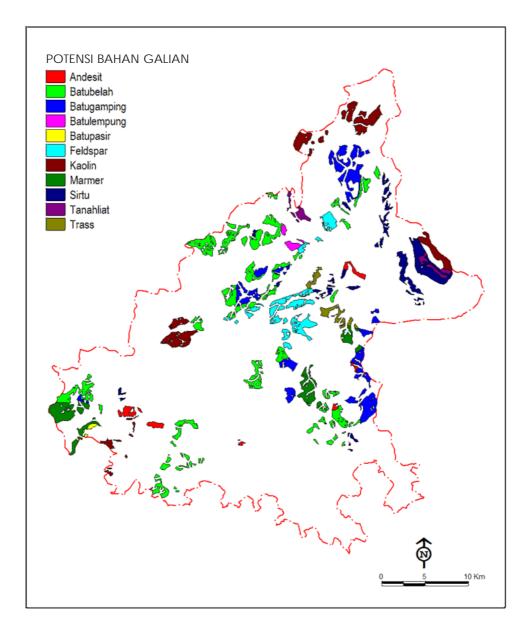
$$d_{ij} = \left(\sum_{k=1}^{c} (x_{ik} - x_{jk})^2\right)^{1/2} \dots (14)$$

Semakin kecil jarak *Squared Euclidean Distance* akan semakin mirip obyek-obyek tersebut dan sebaliknya.

HASIL DAN DISKUSI

Dari analisis terhadap data spasial dengan menggunakan teknologi SIG didapatkan potensi bahan galian yang memungkinkan untuk dikembangkan menjadi lokasi lahan usaha tambang. Sebagai parameter pada proses analisis digunakan nilai cadangan, volume cadangan, satuan wilayah pembangunan yang terdapat di Kabupaten Trenggalek, rencana tata ruang wilayah Kabupaten Trenggalek, rencana umum tata ruang Kabupaten Trenggalek dan kedalaman efektif tanah.

Parameter ini digunakan karena mempunyai keterkaitan yang sangat erat dengan penetapan lokasi usaha pertambangan. Penentuan parameter yang digunakan pada tulisan ini hanya sebagian saja, sedangkan penggunaan parameter lain yang berkaitan dengan penentuan lahan usaha tambang masih banyak yang dapat digunakan. Sudah barang tentu semakin banyak parameter yang digunakan pada analisis akan semakin baik hasil yang dicapai.


Dari analisis spasial diperoleh beberapa potensi yang dimungkinkan untuk dijadikan lahan usaha tambang, adapun hasilnya seperti ditunjukkan pada Gambar 1 dan secara tabulasi diperlihatkan pada Lampiran 1.

Berdasarkan peluang keanggotaan dan confusion index di atas maka dapat diketahui pengelompokkan lahan usaha tambang bahan galian industri yang dikembangkan di Kabupaten Trenggalek dengan menentukan nilai Fuzziness Performance, Modified Partition Entropy dan Nilai s.

Penentuan banyak klaster yang optimal dapat dilihat dari nilai Fuzziness Performance Index (FPI), Modified Partition Entropy (MPE), dan nilai s. Berikut nilai FPI, MPE, dan s dari setiap kelompok-kelompok yang terbentuk (lihat Tabel 1).

Tabel 1. Validasi banyak klaster

Banyak Klaster	Nilai <i>FPI</i>	Nilai <i>MPE</i>	Nilai s
2	0.421338	0.470658	0.992179
3	0.293842	0.311610	0.675840
4	0.276682	0.285238	0.672412
5	0.217083	0.222066	0.478230

Gambar 1. Hasil analisis spasial sebaran potensi bahan galian industri di Kabupaten Trenggalek

Banyak kelas optimal yang terbentuk pada dasarnya adalah meminimalisasi nilai *FPI*, *MPE*, dan *s*. Nilai yang lebih kecil menunjukan ukuran validitas yang lebih baik antar grup-grup dalam *clustering*. Maka dengan menggunakan metode Fuzzy K-means jumlah klaster yang optimal adalah lima klaster.

Setiap lahan usaha tambang bahan galian golongan C memiliki peluang keanggotaan dan *confusion index* terhadap masing-masing klaster sebagai berikut (lihat Lampiran 2).

Berdasarkan peluang keanggotaan dan confusion index di atas maka dapat diketahui pengelompokan

lahan usaha tambang bahan galian yang akan dikembangkan di Kabupaten Trenggalek adalah sebagai berikut (lihat Lampiran 3).

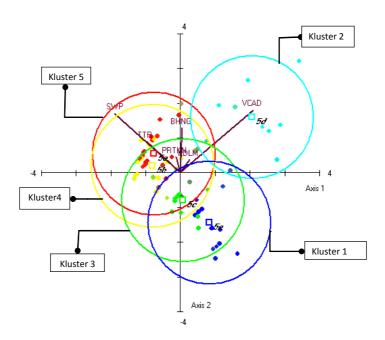
Pusat klaster untuk masing-masing kelompok terlihat pada Tabel 2.

Klaster pertama merupakan kelompok lahan usaha tambang dengan karakteristik memiliki nilai tata ruang dan satuan wilayah pembangunan yang paling kecil dibandingkan dengan kelompok lahan usaha tambang di klaster lain serta nilai bahan galiannya pun cukup kecil.

Tabel 2. Pusat klaster

Klaster	Nilai Bahan Galian	Nilai Volume Cadangan	Nilai Satuan Pembangunan Wilayah	Nilai Peruntukan Lahan	Nilai Tata Ruang	Nilai Kedalaman Efektif Tanah
1	4.2	1925715.29	1.733333	1	1.6	2.8
2	6.052632	1349265.66	2.894737	1	2.684211	1.894737
3	3.461538	1847580.39	1.846154	1.076923	3	2.615385
4	9.6	14378552.2	2.1	1	2.4	3
5	5.52	2115184.19	2.96	1	2.8	3.52

Klaster kedua merupakan kelompok lahan usaha tambang dengan karakteristik memiliki nilai kedalaman efektif dan volume cadangan yang paling kecil dibandingkan dengan kelompok lahan usaha tambang pada klaster lain, artinya bahan galiannya cukup sulit untuk ditambang dan volume cadangan bahan galiannya pun sedikit tetapi memiliki nilai SWP yang cukup tinggi.


Klaster ketiga memiliki tata ruang yang paling baik karena sebagian besar berada dalam kawasan pertanian. Sedangkan untuk bahan galiannya bernilai paling rendah dibandingkan kelompok lahan usaha tambang yang ada di klaster lainnya.

Klaster keempat merupakan kelompok lahan usaha tambang dengan karakteristik memiliki nilai bahan galian paling tinggi, artinya bahan galian yang terdapat pada klaster ini memiliki nilai manfaat yang tinggi dibandingkan dengan klaster lainnya. Bahan

galian tersebut memiliki volume cadangan yang paling banyak dan terletak pada kedalaman efektif tanah yang cukup mudah ditambang karena letak bahan galiannya tidak terlalu dalam (kurang dari 60-90 m) sehingga memudahkan untuk diambil.

Klaster kelima merupakan kelompok lahan usaha tambang dengan karakteristik memiliki nilai Satuan Wilayah Pembangunan paling tinggi dan memiliki nilai Kedalaman Efektif yang paling tinggi dibandingkan klaster lain artinya keberadaan bahan galiannya terletak pada kedalaman efektif tanah yang paling mudah untuk ditambang.

Untuk mengukur apakah ada perbedaan antar kelas dapat dilakukan dengan mencari nilai wilks lamda. Jika nilai wilks lamda 0.02029 maka terdapat perbedaan kelas. Untuk melihat posisi setiap kelompok dapat dilihat dari plot Fuzzy Linear Discrimant (lihat Gambar 2).

Gambar 2. Plot fuzzy linear discrimant

Gambar 3. Pengelompokkan sebaran potensi bahan galian menurut kluster dan delineasi wilayah pertambangan yang diusulkan untuk Kabupaten Trenggalek

Pada Gambar 3 diperlihatkan hasil pengelompokkan sebaran potensi bahan galian berdasarkan hasil analisis kluster. Di samping itu karena saat ini setiap daerah yang mempunyai potensi bahan galian diwajibkan untuk menentukan wilayah pertam-

bangan agar potensi tersebut dapat dimanfaatkan, maka pada Gambar 3 juga diperlihatkan delineasi wilayah pertambangan sebagai usulan untuk pemerintah Kabupaten Trenggalek.

KESIMPULAN

Berdasarkan hasil pembahasan dan analisis data sebelumnya dapat ditarik kesimpulan sebagai berikut:

- Analisis yang digunakan dalam penelitian ini adalah fuzzy k-means clustering dan fuzzy linear discriminant. Metode fuzzy k-means clustering ini menghasilkan segmentasi lahan usaha tambang bahan galian industri yang dapat menggambarkan karekteristik bahan galian industri pada setiap kelompoknya, sehingga selain dapat mempermudah penetapan rencana umum tata ruang daerah dalam pengalokasian lahan usaha tambang bahan galian industri, hasil segmentasi ini dapat mempermudah peminat dan pelaku usaha tambang bahan galian industri memilih dan melaksanakan kegiatan usaha tambang.
- Jumlah kelas optimal dengan menggunakan metode Fuzzy C-Means adalah lima kelompok.
- Jika dilihat dari karakteristiknya, klaster keempat memiliki banyak karakteristik yang lebih baik dibandingkan dengan klaster lainnya, baik dari segi fisik bahan galian itu sendiri, maupun dari tingkat kemudahan dalam menambang. Oleh karena itu, daerah yang terdapat pada klaster keempat cocok untuk dialokasikan dalam kebijakan RUTR sebagai peruntukan lahan usaha tambang di Kabupaten Trenggalek. Walaupun demikian, daerah yang terdapat pada klaster pertama, kedua, ketiga dan kelima merupakan kelompok lahan tambang yang masih tetap dapat diusahakan namun harus mempertimbangkan beberapa aspek yang benar-benar perlu diperhatikan dan diperkirakan dapat diatasi melalui kesepakatan bersama.
- 4. Karena perundangan bidang pertambangan yang berlaku saat ini mewajibkan setiap daerah yang berpotensi bahan galian menetapkan wilayah pertambangan, maka usulan delineasi wilayah pertambangan untuk Kabupaten Trenggalek seluas 68.160 Ha.

DAFTAR PUSTAKA

- Anonim, 2010. Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2010 tentang Wilayah Pertambangan Mineral dan Batubara, Cetakan pertama, PT. Tatanusa, Jakarta, Indonesia.
- Anonim, 2010, Peraturan Pemerintah Republik Indonesia Nomor 23 Tahun 2010 tentang Pelaksanaan Kegiatan Usaha Pertambangan Mineral dan Batubara, Cetakan pertama, PT. Tatanusa, Jakarta, Indonesia.
- Antono, H.T., Heriyanto, Suryana, N., Wibowo, N.W., Hartono, dan Permana, N., 2008. Peruntukan lahan usaha tambang dalam tata ruang wilayah Kabupaten Trenggalek Propinsi Jawa Tengah. Laporan Proyek Pengembangan Wilayah Pertambangan No. 2004/2008.
- Burrough P.A., McDonnell R.A., 1998. *Principals of Geographical Information Systems*. Oxford University Press.
- Dinas Koperasi Industri Perdagangan Pertambangan dan Energi Kabupaten Trenggalek, 2000. *Potensi Bahan Galian di Kabupaten Trenggalek*. Trenggalek, Jawa Timur.
- Graepel, T. 1998. Statistical Physics of Clustering Algorithms. *Technical Report 171822*, FB. Physik, Institut fur Theoretische Physic.
- Kaufman, L., dan Rousseeuw, P.J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc. New York.
- Pemerintah Kabupaten Trenggalek, 2002. Revisi RTRW Kabupaten Trenggalek Tahun 2002 – 2012, Pemkab Trenggalek, Trenggalek Jawa Timur
- Sharma, S. 1996. Applied Multivariate Techniques. Univ. of South Carolina. John Wiley and Sons, Inc. New York.
- Tim Redaksi Tatanusa, 2010. Pertambangan Mineral dan Batubara, Undang-Undang Nomor 4 Tahun 2009, Cetakan pertama, PT. Tatanusa, Jakarta, Indonesia.

LAMPIRAN 1 TABULASI DATA HASIL ANALISIS SPASIAL SEBARAN BAHAN GALIAN INDUSTRI DI KABUPATEN TRENGGALEK

No.	DESA	JENIS BAHAN GALIAN
1	Slawe	Batubelah
2	Watuagung	di, diorit, da, dasit, an. andesit
3	Watuagung	Batugamping dan Kalsit
4	Dukuh	di, diorit, da, dasit, an. andesit
5	Duren	Sirtu
6	Jambu	Batubelah
7	Tegaren	Tanah Liat
8	Joho	Kaolin
9	Karanganyar	Batubelah
10	Kedunglurah	Sirtu
11	Ngulungkulon	Batubelah
12	Sobo	Batubelah
13	Besuki	diorit, dasit, andesit
14	Jajar	Marmer
15	Karanganyar	Batugamping dan Kalsit
16	Watuagung	Batubelah
17	Masaran	Kaolin,Piropilit,Lempung
18	Bogoran	Batubelah
19	Ngrencak	Andesit
20	Barang	Sirtu
21	Wonocolo	Batupasir
22	Gamping	Batugamping dan Kalsit
23	Gamping	Batubelah
24	Nglebo	Batugamping,Marmer
25	Wonokerto	Piropilit,Toseki
26	Kayen	Batubelah
27	Kayen	Batugamping dan Kalsit
28	Suruh	Batubelah
29	Ngentrong	Feldspar, Kaolin, Toseki
30	Karangtengah	Batugamping
31	Karangtengah	Batubelah
32	Terbis	Batubelah
33	Besuki	Kalsit & Marmer
34	Ngelebeng	Kaolin
35	Sukowetan	Sirtu
36	Jombok	Batubelah
37	Karangan	Batubelah
38	Nglinggis	Batubelah
39	Bogoran	Batugamping dan Kalsit
40	Watulimo	Batugamping, Marmer
41	Puru	Feldspar

No.	DESA	JENIS BAHAN GALIAN	
42	Karangsuko	Andesit	
43	Dukuh	Batubelah	
44	Pakel	Batubelah	
45	Parakan	Sirtu	
46	Margomulyo	Sirtu	
47	Sawahan	Batubelah	
48	Gemleb	Sirtu	
49	Gador	Sirtu	
50	Gador	Tanah Liat	
51	Sumberrejo	Sandstone/Bobos	
52	Bendorejo	Sirtu	
53	Jatiprahu	Sirtu	
54	Pogalan	Sirtu	
55	Ngares	Sirtu	
56	Wonoanti	Sirtu	
57	Wonoanti	Batubelah	
58	Timahan	Feldspar	
59	Mlinjo	Feldspar,Toseki	
60	Suruh	Sirtu	
61	Suruh	Batugamping dan Kalsit	
62	Kerjo	Feldspar	
63	Tumpuk	Batu Lempung	
64	Dermosari	Batubelah	
65	Kembangan	Kaolin	
66	Dompyong	Kaolin,Piropilit	
67	Sumurup	Batugamping, Marmer	
68	Sumberdadi	Batubelah	
69	Ngares	Batubelah	
70	Dawuhan	Batubelah	
71	Sukokidul	Batubelah	
72	Duren	Batubelah	
73	Ngepeh	Batubelah	
74	Dawuhan	Sirtu	
75	Gemaharjo	Batubelah	
76	Pakel	Batubelah	
77	Karangrejo	Marmer	
78	Ngadimulyo	Batugamping dan Kalsit	
79	Ngerdani	Batubelah	
80	Sukorejo	Trass	
81	Kedungsigit	Trass	
82	Srabah	Batugamping, Marmer	

LAMPIRAN 2
TABEL PELUANG KEANGGOTAAN DAN CONFUSION INDEX LAHAN USAHA TAMBANG

OBJEK	Desa	Cl	5a	5b	5c	5d	5e
O1	Slawe	0.03671	0.01387	0.00643	0.97715	0.00056	0.00199
O2	Watuagung1	0.96477	0.22334	0.16655	0.25857	0.14673	0.20482
O3	Watuagung2	0.11028	0.03846	0.00621	0.01323	0.92818	0.01393
O4	Dukuh1	0.25589	0.86617	0.0081	0.12206	0.00106	0.0026
O5	Duren1	0.08296	0.00021	0.04009	0.0025	0.00006	0.95714
O6	Jambu	0.13712	0.00094	0.05732	0.02138	0.00015	0.9202
O7	Tegaren	0.12573	0.03632	0.03266	0.01031	0.01013	0.91059
O8	Joho	0.13354	0.03067	0.04084	0.9073	0.00603	0.01516
O9	Karanganyar1	0.00173	0.99902	0.00011	0.00075	0.00001	0.00011
O10	Kedunglurah	0.00184	0.00003	0.99886	0.0004	0.00001	0.0007
O11	Ngulungkulon	0.00223	0.99841	0.00047	0.00064	0.00013	0.00035
O12	Sobo	0.00225	0.99839	0.00048	0.00065	0.00013	0.00035
O13	Besuki1	0.00744	0.00173	0.00107	0.99486	0.00004	0.0023
O14	Jajar	0.53793	0.02325	0.1015 <i>7</i>	0.1081	0.61457	0.1525
O15	Karanganyar2	0.52461	0.63281	0.05334	0.0403	0.15742	0.11614
O16	Watuagung3	0.00177	0.00019	0.00025	0.99889	0.00001	0.00067
O17	Masaran	0.32139	0.02526	0.03757	0.12624	0.00609	0.80485
O18	Bogoran1	0.00173	0.99902	0.00012	0.00075	0.00001	0.00011
O19	Ngrencak	0.00151	0.00016	0.00021	0.99906	0.00001	0.00057
O20	Barang	0.45722	0.72903	0.02039	0.05415	0.01018	0.18625
O21	Wonocolo	0.71537	0.02643	0.61921	0.33458	0.00472	0.01505
O22	Gamping1	0.06159	0.00279	0.01981	0.00682	0.01237	0.95821
O23 O24	Gamping2 Nglebo	0.00389 0.99747	0.00024 0.0079	0.00088 0.19869	0.00136	0.00006	0.99746
O24	Wonokerto				0.0262	0.38234	0.38487
O25	Kayen1	0.97944	0.02632	0.42882	0.44939	0.00365	0.09182
O26	Kayen2	0.94589 0.08848	0.23074 0.00207	0.33094 0.94845	0.05064 0.00962	0.00264 0.00293	0.38505 0.03693
O27	Suruh1	0.06646	0.00207	0.94645	0.00962	0.00293	0.03693
O29	Ngentrong	0.14312	0.001	0.03963	0.02228	0.01843	0.96284
O30	Karangtengah1	0.58533	0.00133	0.63871	0.22403	0.02939	0.07506
O31	Karangtengah2	0.00146	0.99917	0.00009	0.00063	0.00001	0.00009
O32	Terbis	0.00556	0.0003	0.00252	0.99696	0.00001	0.00021
O33	Besuki2	0.03146	0.00422	0.00628	0.00668	0.97568	0.00714
O34	Ngelebeng	0.34269	0.76174	0.10364	0.10442	0.01289	0.01732
O35	Sukowetan	0.06577	0.00016	0.03184	0.00188	0.00005	0.96607
O36	Jombok	0.00159	0.00017	0.00022	0.99901	0.00001	0.0006
O37	Karangan	0.0492	0.00074	0.96989	0.01909	0.00009	0.01018
O38	Nglinggis	0.04887	0.00074	0.9701	0.01897	0.00009	0.0101
O39	Bogoran2	0.98073	0.03724	0.18402	0.19278	0.30261	0.28334
O40	Watulimo	0.02658	0.00381	0.00347	0.00766	0.98109	0.00397
O41	Puru	0.18889	0.00059	0.09133	0.00457	0.00107	0.90244
O42	Karangsuko	0.00425	0.00027	0.00096	0.00148	0.00006	0.99723
O43	Dukuh2	0.1481	0.92143	0.00638	0.06953	0.00103	0.00163
O44	Pakel1	0.00258	0.00028	0.00036	0.99839	0.00001	0.00097
O45	Parakan	0.03203	0.01004	0.97801	0.00397	0.00049	0.0075
O46	Margomulyo	0.07158	0.95961	0.00391	0.03119	0.00186	0.00343
O47	Sawahan	0.0082	0.99483	0.00088	0.00303	0.00055	0.0007
O48	Gemleb	0.00126	0.00002	0.99922	0.00027	0.00001	0.00048
O49	Gador1	0.08045	0.02257	0.94212	0.01029	0.00661	0.01842
O50	Gador2	0.04861	0.01166	0.96583	0.00518	0.00288	0.01444
O51	Sumberrejo	0.99944	0.34732	0.08946	0.19205	0.0233	0.34788
O52	Bendorejo	0.00142	0.00002	0.99912	0.00031	0.00001	0.00054
O53	Jatiprahu	0.00062	0.00004	0.00021	0.00015	0.00002	0.99959
O54	Pogalan	0.00052	0.00003	0.00018	0.00012	0.00001	0.99965
O55	Ngares1	0.00063	0.00004	0.00021	0.00015	0.00002	0.99959

LANJUTAN LAMPIRAN 2 ...

OBJEK	Desa	CI	5a	5b	5c	5d	5e
O56	Wonoanti1	0.07976	0.0002	0.03856	0.00238	0.00006	0.9588
O57	Wonoanti2	0.94644	0.23101	0.33103	0.05076	0.00261	0.38459
O58	Timahan	0.0112	0.00317	0.0009	0.00131	0.99197	0.00265
O59	Mlinjo	0.55888	0.05018	0.21257	0.04591	0.65368	0.03766
O60	Suruh2	0.08433	0.00022	0.04075	0.00255	0.00006	0.95642
O61	Suruh3	0.08906	0.00211	0.94819	0.00974	0.00269	0.03726
O62	Kerjo	0.00652	0.0001	0.99616	0.00096	0.00009	0.00268
O63	Tumpuk	0.00098	0.00005	0.00035	0.00019	0.00005	0.99936
O64	Dermosari	0.046	0.00068	0.97189	0.01788	0.00009	0.00946
O65	Kembangan	0.02911	0.00681	0.00964	0.98052	0.00028	0.00276
O66	Dompyong	0.59051	0.53884	0.12234	0.09413	0.12936	0.11533
O67	Sumurup	0.03827	0.00355	0.01104	0.00196	0.97278	0.01067
O68	Sumberdadi	0.23763	0.08926	0.03236	0.02281	0.00393	0.85164
O69	Ngares2	0.10195	0.00466	0.94154	0.04348	0.00092	0.0094
O70	Dawuhan1	0.1491	0.05331	0.90421	0.02173	0.00085	0.01989
O71	Sukokidul	0.00183	0.00019	0.00025	0.99886	0.00001	0.00069
O72	Duren2	0.13345	0.00091	0.05574	0.0209	0.00015	0.92229
O73	Ngepeh	0.14685	0.05251	0.90566	0.0214	0.00086	0.01958
O74	Dawuhan2	0.03183	0.00997	0.97814	0.00395	0.00049	0.00745
O75	Gemaharjo	0.15225	0.91916	0.00676	0.07141	0.00095	0.00173
O76	Pakel2	0.12292	0.03898	0.03261	0.91606	0.0035	0.00885
O77	Karangrejo	0.00009	0.00002	0.00002	0.00001	0.99993	0.00002
O78	Ngadimulyo	0.92672	0.03962	0.20131	0.20977	0.23801	0.31129
O79	Ngerdani	0.00145	0.99918	0.00009	0.00063	0.00001	0.00009
O80	Sukorejo	0.01822	0.00031	0.98927	0.00246	0.00048	0.00749
O81	Kedungsigit	0.00473	0.00023	0.00172	0.00075	0.0003	0.99699
O82	Srabah	0.01044	0.00134	0.00272	0.00092	0.99229	0.00273

LAMPIRAN 3 PENGELOMPOKAN LAHAN USAHA TAMBANG BAHAN GALIAN YANG DIKEMBANGKAN DI KABUPATEN TRENGGALEK

Klaster	No.	Desa	Kecamatan
	Objek		
1	O4 O9 O11 O12 O15 O18 O20 O31 O34 O43 O46 O47 O66 O75 O79	Dukuh1 Karanganyar1 Ngulungkulon Sobo Karanganyar2 Bogoran1 Barang Karangtengah2 Ngelebeng Dukuh2 Margomulyo Sawahan Dompyong Gemaharjo Ngerdani	Watulimo Pule Munjungan Munjungan Gandusari Kampak Panggul Panggul Panggul Watulimo Watulimo Watulimo Bendungan Watulimo Dongko
2	O10 O21 O27 O30 O37 O38 O45 O48 O49 O50 O52 O61 O62 O64 O69 O70 O73 O74 O80	Kedunglurah Wonocolo Kayen2 Karangtengah1 Karangan Nglinggis Parakan Gemleb Gador1 Gador2 Bendorejo Suruh3 Kerjo Dermosari Ngares2 Dawuhan1 Ngepeh Dawuhan2 Sukorejo	Pogalan Panggul Karangan Panggul Karangan Tugu Trenggalek Pogalan Durenan Durenan Pogalan Karangan Karangan Tugu Trenggalek Trenggalek Tugu Trenggalek Tugu Trenggalek Gandusari
3	O1 O2 O8 O13 O16 O19 O25 O32 O36 O44 O65 O71 O76	Slawe Watuagung1 Joho Besuki1 Watuagung3 Ngrencak Wonokerto Terbis Jombok Pakel1 Kembangan Sukokidul Pakel2	Watulimo Watulimo Pule Munjungan Dongko Panggul Karangan Panggul Pule Pule Pule Pule Watulimo

Klaster	No. Objek	Desa	Kecamatan
4	O3 O14 O33 O39 O40 O58 O59 O67 O77 O82	Watuagung2 Jajar Besuki2 Bogoran2 Watulimo Timahan Mlinjo Sumurup Karangrejo Srabah	Watulimo Gandusari Panggul Kampak Watulimo Kampak Karangan Bendungan Kampak Bendungan
5	O5 O6 O7 O17 O22 O23 O24 O26 O28 O29 O35 O41 O42 O51 O53 O54 O55 O56 O57 O60	Duren1 Jambu Tegaren Masaran Gamping1 Gamping2 Nglebo Kayen1 Suruh1 Ngentrong Sukowetan Puru Karangsuko Sumberrejo Jatiprahu Pogalan Ngares1 Wonoanti1 Wonoanti2 Suruh2	Tugu Tugu Tugu Bendungan Karangan Karangan Karangan Karangan Karangan Karangan Karangan Trenggalek Durenan Karangan Pogalan Trenggalek Gandusari Gandusari
	O63 O68 O72 O78 O81	Tumpuk Sumberdadi Duren2 Ngadimulyo Kedungsigit	Tugu Trenggalek Tugu Kampak Karangan