TECHNO-ECONOMIC OF GRAPHITE ANODE RECYCLING PROCESS OF ELECTRIC VEHICLE LITHIUM-ION BATTERIES

Authors

  • Agus Miswanto Research Group of Value-Added and Techno-economic of Minerals and Coal, National Research and Innovation Agency
  • Tatang Wahyudi Research Group for Advanced Minerals Processing of Non Ferrous Mineral Rock and Coal, National Research and Innovation Agency
  • Agus Prakosa Research Group of Increased Added Value for Rare Earth Metal Minerals, National Research and Innovation Agency, Indonesia
  • David Candra Birawidha Research Group for Advanced Minerals Processing of Non Ferrous Mineral Rock and Coal, National Research and Innovation Agency, Indonesia

DOI:

https://doi.org/10.30556/imj.Vol26.No2.2023.1528

Keywords:

lithium-ion batteries, electric vehicle, graphite anode recycle, economic

Abstract

Graphite is the primary material for battery anodes used in electronic devices such as cell phones, laptops, and electric vehicles. Exploiting natural graphite in Indonesia is still in the exploration stage. The ever increasing demand for energy storage devices poses challenges in producing battery-grade graphite. One possible approach is to recycle the graphite anode (AG) from used Lithium-ion Batteries (LIB) into battery components. By utilizing waste as a raw material, production costs are lower as well as the use of LIB becomes more sustainable. This study discusses the techno-economics of AG recycling from electric vehicle (EV) LIBs. Secondary data is used from various research reports, journals, and books published through the official website as references and assumptions in calculations and analysis. Mechanical separation to remove plastic components, washing with organic solvents (using dimethyl carbonate-DMC) and using dimethyl carbonate (DMC) and N-methyl-2-pyrrolidone (NMP), then washing process with H2SO4 + H2O2 purifies graphite to be reused as anode material for the new LIB. Economic analysis shows that the Net Present Value is IDR 388,675,699, the Internal Rate of Return is 33.79% per year, and the Payback Period is two years and ten months. These three indicators show that the project is financially viable. The sensitivity analysis shows that it is still profitable if there is an increase in production costs of up to 20% and a decrease in selling prices of up to 20% or USD 12,000 per tonne.

References

Alfarizi, M.K. and Widyastuti, A.Y. (2022) Kemenhub ungkap jumlah kendaraan listrik RI baru 31.827 unit dari target 100 Ribu, Tempo.co. Available at: https://bisnis.tempo.co/read/1651913/kemenhub-ungkap-jumlah-kendaraan-listrik-ri-baru-31-827-unit-dari-target-100-ribu (Accessed: 3 June 2023).

Aries, R.S. and Newton, R.D. (1955) Chemical engineering cost estimation. New York: Mc. Graw Hill Book Company.

Autthawong, T., Yodbunork, C., Yodying, W., Boonprachai, R., Namsar, O., Yu, A., Chimupala, Y. and Sarakonsri, T. (2022) ‘Fast-charging anode materials and novel nanocomposite design of rice husk-derived SiO2 and Sn nanoparticles self-assembled on TiO2 (B) nanorods for lithium-ion storage applications’, ACS Omega, 7(1), pp. 1357–1367. Available at: https://doi.org/10.1021/acsomega.1c05982.

Bank Indonesia (2023) Data inflasi, bi.go.id. Available at: https://www.bi.go.id/id/statistik/indikator/data-inflasi.aspx (Accessed: 9 June 2023).

Bhar, M., Dey, A., Ghosh, S., van Spronsen, M.A., Selvaraj, V., Kaliprasad, Y., Krishnamurthy, S. and Martha, S.K. (2022) ‘Plasma jet printing induced high-capacity graphite anodes for sustainable recycling of lithium-ion batteries’, Carbon, 198, pp. 401–410. Available at: https://doi.org/10.1016/j.carbon.2022.07.027.

Budiman, A. (2016) ‘Kajian tekno ekonomi potensi sampah kota Pontianak sebagai sumber pembangkit listrik tenaga uap (PLTU)’, ELKHA, 8(1), pp. 1–5. Available at: https://doi.org/10.26418/elkha.v8i1.14385.

Calhoun, K. and Harkins, D.W.R. (2021) Understand the discount rate used in a business valuation, Mercer Capital. Available at: https://mercercapital.com/article/understand-the-discount-rate-used-in-a-business-valuation/ (Accessed: 23 May 2023).

Dai, Q., Spangenberger, J., Ahmed, S., Gaines, L., Kelly, J.C. and Wang, M. (2019) EverBatt: A closed-loop battery recycling cost and environmental impacts model. Argonne National Laboratory.

Fact.MR (2023) LIB anode market outlook (2023 to 2033), Fact.MR. Available at: https://www.factmr.com/report/4068/lib-anode-market (Accessed: 14 June 2023).

Foster, M., Isely, P., Standridge, C.R. and Hasan, M.M. (2014) ‘Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries’, Journal of Industrial Engineering and Management, 7(3), pp. 698–715. Available at: https://doi.org/10.3926/jiem.939.

Fransson, L., Eriksson, T., Edström, K., Gustafsson, T. and Thomas, J.. (2001) ‘Influence of carbon black and binder on Li-ion batteries’, Journal of Power Sources, 101(1), pp. 1–9. Available at: https://doi.org/10.1016/S0378-7753(01)00481-5.

Hakizimana, J. de D.K. and Kim, H.-T. (2016) ‘Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda’, Energy, 102, pp. 453–464. Available at: https://doi.org/10.1016/j.energy.2016.02.073.

Ifa, L. and Nurdjannah (2019) Ekonomi Pabrik. Makassar: Wade Group.

Indonesia Window (2021) Permintaan grafit alam diperkirakan naik 154 persen setiap tahun, indonesiawindow.com. Available at: https://indonesiawindow.com/permintaan-grafit-alam-diperkirakan-naik-154-persen-setiap-tahun/ (Accessed: 12 June 2023).

Jacoby, M. (2019) ‘It’s time to get serious about recycling lithium-ion batteries’, Chemical & Engineering News, 97(28), pp. 29–32.

Kang, Y., Deng, C., Chen, Y., Liu, X., Liang, Z., Li, T., Hu, Q. and Zhao, Y. (2020) ‘Binder-free electrodes and their application for Li-Ion batteries’, Nanoscale Research Letters, 15(1), p. 112. Available at: https://doi.org/10.1186/s11671-020-03325-w.

Lai, Y., Zhu, Xianqing, Li, J., Gou, Q., Li, M., Xia, A., Huang, Y., Zhu, Xun and Liao, Q. (2023) ‘Recovery and regeneration of anode graphite from spent lithium-ion batteries through deep eutectic solvent treatment: Structural characteristics, electrochemical performance and regeneration mechanism’, Chemical Engineering Journal, 457, p. 141196. Available at: https://doi.org/10.1016/j.cej.2022.141196.

Liu, K., Yang, S., Luo, L., Pan, Q., Zhang, P., Huang, Y., Zheng, F., Wang, H. and Li, Q. (2020) ‘From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries’, Electrochimica Acta, 356, p. 136856. Available at: https://doi.org/10.1016/j.electacta.2020.136856.

Moore, S.A., Arefin, M.R. and Rosenfeld, H. (2018) ‘Generating anxiety, short-circuiting desire: Battery waste and the capitalist phantasy’, Environment and Planning D: Society and Space, 36(6), pp. 1081–1100. Available at: https://doi.org/10.1177/0263775818777249.

Mossali, E., Picone, N., Gentilini, L., Rodrìguez, O., Pérez, J.M. and Colledani, M. (2020) ‘Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments’, Journal of Environmental Management, 264, p. 110500. Available at: https://doi.org/10.1016/j.jenvman.2020.110500.

Mr. Sustainability (2021) Battery recycling, made by Northvolt: Creating a circular European battery industry, mr-sustainability.com. Available at: https://www.mr-sustainability.com/stories/2021/battery-recycling-northvolt (Accessed: 4 July 2023).

Nguyen-Tien, V., Dai, Q., Harper, G.D.J., Anderson, P.A. and Elliott, R.J.R. (2022) ‘Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy’, Applied Energy, 321, p. 119230. Available at: https://doi.org/10.1016/j.apenergy.2022.119230.

Ni’mah, atim L., Hidayatullah, N.A.A.K., Suprapto, S., Subhan, A. and Hardiansyah, A. (2022) ‘Recovery of graphite from lithium ion batteries leaching using sulfuric acid as anode materials’, Moroccan Journal of Chemistry, 10(3), pp. 396–404. Available at: https://doi.org/https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.32667.

Nursahan, I., Heditama, D.M., Sunuhadi, D.N., Mulyadi, A.D., Eddy, H.R., Juarsa, A., Wibisono, S.A., Ibrahim, M.A., Oktaviani, P., Hidayat, R., Fatimah, Hermawan, D., Mustofa, S.A., Permana, L.A. and Rustina, T.S. (2022) Neraca sumber daya dan cadangan mineral, batubara, dan panas bumi Indonesia Tahun 2021. Edited by M. Awaludin, S.S.R. Susilawati, and A. Munandar. Bandung: Pusat Sumber Daya Mineral, Batubara dan Panas Bumi.

Otoritas Jasa Keuangan (2023) Suku bunga dasar kredit, ojk.go.id. Available at: https://ojk.go.id/id/kanal/perbankan/pages/suku-bunga-dasar.aspx (Accessed: 11 May 2023).

Peters, M.S. and Timmerhaus, K.D. (1991) Plant design and economics for chemical engineers. 4th edn. New York: Mc. Graw Hill Book Company.

Peters, M.S., Timmerhaus, K.D. and West, R.E. (2004) Plant design and economics for chemical engineers. 5th edn. New York: Mc. Graw Hill Book Company.

Puviarasu, M., Asokan, P., Sherif, S.U., Mathiyazhagan, K. and Sasikumar, P. (2023) ‘A STEEP based hybrid multi-criteria decision making model for the evaluation of battery recycling plant location’, Journal of Advances in Management Research, 20(2), pp. 234–264. Available at: https://doi.org/10.1108/JAMR-06-2022-0124.

Qian, G., Li, Z., Wang, Y., Xie, X., He, Y., Li, J., Zhu, Y., Xie, S., Cheng, Z., Che, H., Shen, Y., Chen, L., Huang, X., Pianetta, P., Ma, Z.-F., Liu, Y. and Li, L. (2022) ‘Value-creating upcycling of retired electric vehicle battery cathodes’, Cell Reports Physical Science, 3(2), p. 100741. Available at: https://doi.org/10.1016/j.xcrp.2022.100741.

Rallo, H., Canals Casals, L., De La Torre, D., Reinhardt, R., Marchante, C. and Amante, B. (2020) ‘Lithium-ion battery 2nd life used as a stationary energy storage system: Ageing and economic analysis in two real cases’, Journal of Cleaner Production, 272, p. 122584. Available at: https://doi.org/10.1016/j.jclepro.2020.122584.

Refaat, M.M., Aleem, S.H.E.A., Atia, Y., Zahab, E.E.D.A. and Sayed, M.M. (2023) ‘A new decision-making strategy for techno-economic assessment of generation and transmission expansion planning for modern power systems’, Systems, 11(1), p. 23. Available at: https://doi.org/10.3390/systems11010023.

Rizaty, M.A. (2022) Deretan negara produsen grafit terbesar di dunia, Katadata Media Network. Available at: https://databoks.katadata.co.id/datapublish/2022/05/27/deretan-negara-produsen-grafit-terbesar-di-dunia (Accessed: 31 July 2023).

Samarukha, I. (2020) Recycling strategies for end-of-life Li-ion batteries from heavy electric vehicles. KTH Industrial Engineering and Management.

Sambamurthy, S., Raghuvanshi, S. and Sangwan, K.S. (2021) ‘Environmental impact of recycling spent lithium-ion batteries’, Procedia CIRP, 98, pp. 631–636. Available at: https://doi.org/10.1016/j.procir.2021.01.166.

Shahjalal, M., Roy, P.K., Shams, T., Fly, A., Chowdhury, J.I., Ahmed, M.R. and Liu, K. (2022) ‘A review on second-life of Li-ion batteries: Prospects, challenges, and issues’, Energy, 241, p. 122881. Available at: https://doi.org/10.1016/j.energy.2021.122881.

Simandl, G.J., Paradis, S. and Akam, C. (2015) ‘Graphite deposit types, their origin, and economic significance’, in Symposium on Critical and Strategic Materials. British Columbia Geological Survey, pp. 163–171.

Statista (2023) Electric vehicles - Worldwide, statista.com. Available at: https://www.statista.com/outlook/mmo/electric-vehicles/worldwide (Accessed: 9 July 2023).

Tirta Raharja (2022) Tarif air minum tahun 2022, tirtaraharja.co.id. Available at: https://tirtaraharja.co.id/berita/detail/tarif-air-minum-tahun-2022# (Accessed: 9 June 2023).

Triaswinanti, R., Triastomo, R., Puspita, A.N.G. and Hapid, A. (2023) ‘Studi tekno-ekonomi proses pirometalurgi daur ulang baterai lithium manganese oxide (LMO) dan lithium iron phosphate (LFP)’, J@ti Undip: Jurnal Teknik Industri, 18(2), pp. 94–108. Available at: https://doi.org/10.14710/jati.18.2.94-108.

Winslow, K.M., Laux, S.J. and Townsend, T.G. (2018) ‘A review on the growing concern and potential management strategies of waste lithium-ion batteries’, Resources, Conservation and Recycling, 129, pp. 263–277. Available at: https://doi.org/10.1016/j.resconrec.2017.11.001.

Zainuri (2021) Ekonomi teknik. 1st edn. Edited by E. Martinelly. Padang: CV. Jasa Surya.

Zhang, W., Xu, C., He, W., Li, G. and Huang, J. (2018) ‘A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them’, Waste Management & Research: The Journal for a Sustainable Circular Economy, 36(2), pp. 99–112. Available at: https://doi.org/10.1177/0734242X17744655.

Zhao, Y., Pohl, O., Bhatt, A.I., Collis, G.E., Mahon, P.J., Rüther, T. and Hollenkamp, A.F. (2021) ‘A review on battery market trends, second-life reuse, and recycling’, Sustainable Chemistry, 2(1), pp. 167–205. Available at: https://doi.org/10.3390/suschem2010011.

Zheng, D., Yu, L. and Wang, L. (2019) ‘A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation’, Energy, 189, p. 116169. Available at: https://doi.org/10.1016/j.energy.2019.116169.

Downloads

Published

2023-12-29

Most read articles by the same author(s)

1 2 3 4 5 > >>