THE AVAILABILITY OF INDONESIAN COAL TO MEET THE 2050 DEMAND

Authors

  • Gandhi Kurnia Hudaya R&D Centre for Mineral and Coal Technology (Puslitbang Teknologi Mineral dan Batubara)
  • Nendaryono Madiutomo R&D Centre for Mineral and Coal Technology (Puslitbang Teknologi Mineral dan Batubara)

DOI:

https://doi.org/10.30556/imj.Vol22.No2.2019.689

Keywords:

coal supply demand, government policy, dynamic system

Abstract

Coal is the important energy source for industry and power plant in Indonesia. Its reserve is quite abundant around 28.5 billion tons. The Government of Indonesia issued the National Energy Policy (NEP) to target 25% of coal use of the national energy mix in 2050. The NEP directs the national energy management for the provision and utilization of primary energy. However, there are worries about the ability of coal reserve in accommodating the demand from domestic and export needs. The National Energy Council recommended coal production restriction policy for anticipation measures. This research investigated the current state of the coal reserves and the government policy to meet the target in 2050 using Vensim program. In the Vensim, a model was built to represent a coal supply-demand system. Several scenarios were simulated to analyze the relationship between the government policy and the coal reserve. The result shows that government intervention such as coal production restriction policy is needed to ensure Indonesia’s coal reserve can fulfill domestic demand for power generation and industry by 2050.

Author Biography

Gandhi Kurnia Hudaya, R&D Centre for Mineral and Coal Technology (Puslitbang Teknologi Mineral dan Batubara)

coal

References

Bauer, N., Mouratiadou, I., Luderer, G., Baumstark, L., Brecha, R. J., Edenhofer, O. and Kriegler, E. (2016) ‘Global fossil energy markets and climate change mitigation - An analysis with remind’, Climatic Change, 136(1), pp. 69–82. doi: 10.1007/s10584-013-0901-6.

Bian, Z., Inyang, H. I., Daniels, J. L., Otto, F. and Struthers, S. (2010) ‘Environmental issues from coal mining and their solutions’, Mining Science and Technology (China), 20(2), pp. 215–223. doi: 10.1016/S1674-5264(09)60187-3.

BP (2017) BP statistical review of world energy 2017. 66th Ed. BP. Available at: https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf.

Directorate General of Electricity (2017) Electrification ratio of Indonesia. Jakarta: Directorate General of Electricity.

Directorate General of Mineral and Coal (2017a) Coal export destination country. Jakarta: Directorate General of Mineral and Coal.

Directorate General of Mineral and Coal (2017b) Realization of domestic coal consumption. Jakarta: Directorate General of Mineral and Coal.

Directorate General of Mineral and Coal (2017c) Trend projection of coal reserves in Indonesia. Jakarta: Directorate General of Mineral and Coal.

Dyner, I. and Larsen, E. R. (2001) ‘From planning to strategy in the electricity industry’, Energy Policy, 29(13), pp. 1145–1154. doi: 10.1016/S0301-4215(01)00040-4.

Energy Information Administration (2009) The national energy modeling system: An overview 2009. Washington: Energy Information Administration.

Fan, Y., Yang, R.-G. and Wei, Y.-M. (2007) ‘A system dynamics based model for coal investment’, Energy, 32(6), pp. 898–905. doi: 10.1016/j.energy.2006.09.015.

Ford, A. (1999) Modeling the environment: An introduction to system dynamics modeling of environmental systems. Island Press.

Forrester, J. W. (1961) Industrial dynamics. Waltham: M.I.T. Press.

Geology Agency (2016) ‘Map of Indonesia’s coal resources and reserves 2016’. Bandung: Badan Geologi, p. 1.

Ghaffarzadegan, N., Lyneis, J. and Richardson, G. P. (2010) ‘How small system dynamics models can help the public policy process’, System Dynamics Review, 27(1), pp. 22–44. doi: 10.1002/sdr.442.

Höök, M., Zittel, W., Schindler, J. and Aleklett, K. (2010) ‘Global coal production outlooks based on a logistic model’, Fuel, 89(11), pp. 3546–3558. doi: 10.1016/j.fuel.2010.06.013.

Hosseini, S. H., Shakouri G., H., Kiani, B., Pour, M. M. and Ghanbari, M. (2014) ‘Examination of Iran’s crude oil production peak and evaluating the consequences: A system dynamics approach’, Energy Exploration & Exploitation, 32(4), pp. 673–690. doi: 10.1260/0144-5987.32.4.673.

Indonesia Coal Mining Association (2016) ‘Indonesia coal industry update’. Tokyo: JOGMEG Coal Invesment Seminar, p. 24.

Kiani, B., Hosseini, S. H. and Roozbeh, H. A. (2009) ‘Examining the Hubbert peak of Iran‘s crude oil: A system dynamics approach’, European Journal of Scientific Research, 25(3), pp. 437–447.

Leopold, A. (2016) ‘Energy related system dynamic models: A literature review’, Central European Journal of Operations Research, 24(1), pp. 231–261. doi: 10.1007/s10100-015-0417-4.

Maggio, G. and Cacciola, G. (2012) ‘When will oil, natural gas, and coal peak?’, Fuel, 98, pp. 111–123. doi: 10.1016/j.fuel.2012.03.021.

Ministry of Energy and Mineral Resources (2017) Sektor pasokan energi: Produksi minyak, gas dan batubara. Jakarta: Ministry of Energy and Mineral Resources Republic of Indonesia. Available at: http://calculator2050.esdm.go.id/assets/mini_paper/energy/id/Panduan Pengguna untuk Produksi Fosil.pdf.

Mohr, S. H., Wang, J., Ellem, G., Ward, J. and Giurco, D. (2015) ‘Projection of world fossil fuels by country’, Fuel, 141, pp. 120–135. doi: 10.1016/j.fuel.2014.10.030.

Mohr, S. H. and Evans, G. M. (2009) ‘Forecasting coal production until 2100’, Fuel, 88(11), pp. 2059–2067. doi: 10.1016/j.fuel.2009.01.032.

Patzek, T. W. and Croft, G. D. (2010) ‘A global coal production forecast with multi-Hubbert cycle analysis’, Energy, 35(8), pp. 3109–3122. doi: 10.1016/j.energy.2010.02.009.

PT PLN (2015) Rencana usaha penyediaan tenaga listrik (RUPTL) PT PLN (Persero) 2015-2024. Jakarta: PT PLN.

PT PLN (2017) Statistik PLN 2016. Jakarta: PLN.

PWC (2017) Indonesia could deplete coal reserves by 2033, www.pwc.com. Available at: https://www.pwc.com/id/en/media-centre/pwc-in-news/2016/english/indonesia-could-deplete-coal-reserves-by-2033---pwc.html (Accessed: 10 October 2017).

Rosyid, F. A. and Adachi, T. (2016) ‘Coal mining in Indonesia: Forecasting by the growth curve method’, Mineral Economics, 29(2–3), pp. 71–85. doi: 10.1007/s13563-016-0091-6.

Sterman, J. D. (2000) Business dynamics: Systems thinking and modeling for a complex world. McGraw-Hill.

Sugiyono, A., Anindhita, Wahid, L. M. A. and Adiarso (eds) (2016) Indonesia Energy Outlook 2016. Jakarta: BPPT-Press. Available at: https://www.researchgate.net/profile/Agus_Sugiyono/publication/305875716_Outlook_Energi_Indonesia_2016/links/5a4f2c46458515e71b091e67/Outlook-Energi-Indonesia-2016.pdf.

Sullivan, P. A. (2014) Use of dynamic modeling to simulate energy market manipulation. New Mexico University.

Tang, X., Zhang, B., Höök, M. and Feng, L. (2010) ‘Forecast of oil reserves and production in Daqing oilfield of China’, Energy, 35(7), pp. 3097–3102. doi: 10.1016/j.energy.2010.03.043.

Tao, Z. and Li, M. (2007) ‘System dynamics model of Hubbert Peak for China’s oil’, Energy Policy, 35(4), pp. 2281–2286. doi: 10.1016/j.enpol.2006.07.009.

Tumiran (2017) Kebijakan energi nasional menuju tahun 2050: Peran batubara mendukung ketahanan energi nasional. Jakarta.

Xu, J. and Li, X. (2011) ‘Using system dynamics for simulation and optimization of one coal industry system under fuzzy environment’, Expert Systems with Applications, 38(9), pp. 11552–11559. doi: 10.1016/j.eswa.2011.03.033.

Yunna, W., Kaifeng, C., Yisheng, Y. and Tiantian, F. (2015) ‘A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China’, Renewable and Sustainable Energy Reviews, 45, pp. 235–243. doi: 10.1016/j.rser.2015.01.060.

Downloads

Published

2019-10-31

Most read articles by the same author(s)