KALKULASI STRUKTUR TRIKLINIK ALBIT PASIR BESI TITAN YOGYAKARTA DENGAN PENDEKATAN KALKULASI MONOKLINIK
DOI:
https://doi.org/10.30556/jtmb.Vol16.No3.2020.1095Kata Kunci:
albit, pasir besi titan, Yogyakarta, XRDAbstrak
Albit merupakan salah satu mineral non-bijih yang terdapat pada pasir besi titan Yogyakarta. Dari sudut pandang kristalografi, albit memiliki struktur kristal triklinik yang sulit sekali dikalkulasi karena karakteristik parameter kisinya yang tidak bersudut 90°. Hal ini menimbulkan kesulitan tersendiri dalam memastikan fasa albit sebenarnya pada pasir besi titan dari Yogyakarta. Studi ini dilakukan untuk memperkenalkan metode kalkulasi yang mudah untuk memprediksi fasa albit pada pasir besi titan Yogyakarta. Dalam kalkulasinya, dilakukan pemisalan sudut kisi α dan γ menjadi 90° serta sudut kisi β menjadi 116°. Sementara kalkulasi parameter kisi dilakukan dengan pendekatan kalkulasi monoklinik. Dengan metode kalkulasi ini didapatkan hasil perhitungan nilai-nilai parameter kisi a = 8,130081 Å, b = 12,96716 Å dan c = 7,105432 Å. Dengan karakteristik nilai-nilai parameter kisi ini, diduga kuat fasa albit pada pasir besi titan Yogyakarta adalah (Na,K)(AlSi3O8) dengan jenis high albite.
Referensi
Alghamdi, A. S. dan Almugren, K. S. (2019) “Assessment of the chemical compositions and natural radioactivity in ceramic tiles used in some Saudi Arabian buildings,” Journal of the Australian Ceramic Society, 55(4), hal. 1099–1107. doi: 10.1007/s41779-019-00324-8.
Boccalon, E., Rosi, F., Vagnini, M. dan Romani, A. (2019) “Multitechnique approach for unveiling the technological evolution in building materials during the Roman Imperial Age: The Atrium Vestae in Rome,” The European Physical Journal Plus, 134(10), hal. 528. doi: 10.1140/epjp/i2019-12936-y.
Chandra, B. T., Sanjeevamurthy dan Shiva Shankar, H. S. (2018) “Effect of heat treatment on dry sand abrasive wear behavior of Al7075-Albite particulate composites,” Materials Today: Proceedings, 5(2), hal. 5968–5975. doi: 10.1016/j.matpr.2017.12.198.
Fleet, M. E. (1991) “Structures of low gallium albite (NaGaSi3O8) and intermediate germanium albite (NaAlGe3O8): Tetrahedral-site ordering in sodium feldspar,” American Mineralogist, 76(1–2), hal. 92–99.
Frizzo, R. G., Zaccaron, A., de Souza Nandi, V. dan Bernardin, A. M. (2020) “Pyroplasticity on porcelain tiles of the albite-potassium feldspar-kaolin system: A mixture design analysis,” Journal of Building Engineering, 31, hal. 101432. doi: 10.1016/j.jobe.2020.101432.
Guo, J., Li, Q., Wang, W., Zhang, Q., Wang, J. dan Hou, Z. (2017) “Diagenetic sequence and genetic mechanism of Silurian tight sandstone reservoirs in the eastern Tarim Basin, Northwest China,” Journal of Earth Science, 28, hal. 1109–1125.
Jena, S. K., Dash, N., Samal, A. K. dan Misra, P. K. (2019) “Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects,” Korean Journal of Chemical Engineering, 36(12), hal. 2060–2073. doi: 10.1007/s11814-019-0393-9.
Keefer, K. D. dan Brown, G. E. (1978) “Crystal structures and compositions of sanidine and high albite in cryptoperthitic intergrowth,” American Mineralogist, 63(11–12), hal. 1264–1273.
Kim, H.-I. dan Lee, S. K. (2020) “Extent of disorder in iron-bearing albite and anorthite melts: Insights from multi-nuclear (29Si, 27Al, and 17O) solid-state NMR study of iron-bearing NaAlSi3O8 and CaAl2Si2O8 glasses,” Chemical Geology, 538, hal. 119498. doi: 10.1016/j.chemgeo.2020.119498.
Miyahara, M., Ohtani, E. dan Yamaguchi, A. (2017) “Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history,” Geochimica et Cosmochimica Acta, 217, hal. 320–333. doi: 10.1016/j.gca.2017.08.034.
Purawiardi, I., Purawiardi, R. dan Firdiyono, F. (2020) “Probabilitas mineral pasir besi titan Yogyakarta berdasarkan studi pXRF,” Jurnal Teknologi Mineral dan Batubara, 16(1), hal. 15–21. doi: 10.30556/jtmb.Vol16.No1.2020.1064.
Schmidt, C., Wohlers, A., Marquardt, K. dan Watenphul, A. (2014) “Experimental study on the pseudobinary H2O+NaAlSi3O8 at 600–800°C and 0.3–2.4GPa,” Chemical Geology, 388, hal. 40–47. doi: 10.1016/j.chemgeo.2014.09.005.
Suryanarayana, C. dan Norton, M. G. (1998) X-ray diffraction: A practical approach. 1 ed. New York: Plenum Press.
Wang, H., Zhou, A., Guo, H., Lü, M. dan Yu, H. (2020) “Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid,” Journal of Central South University, 27(1), hal. 27–36. doi: 10.1007/s11771-020-4275-4.
Yin, Z., Jiang, C., Chen, M., Lu, F. dan Chen, Q. (2017) “Inclusions of α-quartz, albite and olivine in a mantle diamond,” Gondwana Research, 44, hal. 228–235. doi: 10.1016/j.gr.2016.12.004.
Zhang, L., Namhata, A., Dilmore, R., Wang, B., Wang, Y., Gan, M. dan Li, X. (2020) “Application of arbitrary polynomial chaos (aPC) expansion for global sensitivity analysis of mineral dissolution and precipitation modeling under geologic carbon storage conditions,” Computational Geosciences, 24(3), hal. 1333–1346. doi: 10.1007/s10596-020-09953-6.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Jurnal Teknologi Mineral dan Batubara menyediakan akses terbuka yang pada prinsipnya membuat konten yang tersedia dapat diakses secara gratis untuk umum dan mendukung pertukaran informasi/pengetahuan secara global.

Jurnal Teknologi Mineral dan Batubara berada di bawah lisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Teknolgi Mineral dan Batubara provides immediate open access to its content on the principle that making research freely available to the public to supports a greater global exchange of knowledge.
Jurnal Teknologi Mineral dan Batubara is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.