INOKULASI AZOTOBACTER DAN APLIKASI KOMPOS UNTUK BIOREMEDIASI TAILING TERKONTAMINASI MERKURI

Penulis

  • Reginawanti Hindersah Fakultas Pertanian Universitas Padjadjaran
  • Gina Nurhabibah Lulusan Program Studi Agroteknologi, Universitas Padjadjaran
  • Rachmat Harryanto Fakultas Pertanian Universitas Padjadjaran

DOI:

https://doi.org/10.30556/jtmb.Vol17.No1.2021.1142

Kata Kunci:

bakteri resisten merkuri, bioremediasi, kompos, tailing

Abstrak

Kadar merkuri (Hg) yang tinggi pada tailing tambang emas adalah sumber pencemaran lingkungan termasuk lahan pertanian. Penurunan kadar Hg di tailing dengan metode bioremediasi adalah strategi yang efektif, murah dan mudah. Azotobacter adalah rizobakteri pemfiksasi nitrogen dan penghasil eksopolisakarida yang mengubah mobilitas logam berat serta memicu pertumbuhan tanaman dengan optimal jika terdapat bahan organik. Penelitian ini dilakukan untuk mengevaluasi pengaruh dosis bahan organik dan Azotobacter strain resisten Hg terhadap perubahan kadar Hg di tailing dan tanaman jagung. Percobaan rumah kaca dirancang dalam Rancangan Petak Terbagi dengan tiga ulangan. Petak utama adalah dosis bahan organik yang terdiri atas 22,5; 30 dan 37,5 g/polibeg. Anak petak adalah strain bakteri terdiri atas tanpa inokulan, Azotobacter indigen, A. chroococcum, dan konsorsium kedua bakteri. Hasil penelitian menunjukkan bahwa inokulasi Azotobacter meningkatkan tinggi dan bobot kering tanaman jagung umur 3 minggu. Aplikasi kompos kotoran sapi 30 g/polibeg disertai inokulasi A. chroococcum maupun konsorsium Azotobacter menurunkan kadar Hg tanah dan meningkatkan serapan Hg di tanaman. Penelitian ini menjelaskan bahwa inokulasi Azotobacter menginduksi serapan Hg oleh tanaman sehingga berpotensi digunakan untuk bioremediasi tailing terkontaminasi Hg dengan tanaman fitoakumulator.

Biografi Penulis

Reginawanti Hindersah, Fakultas Pertanian Universitas Padjadjaran

Departemen Ilmu Tanah

Referensi

Aajjane, A., Karam, A. dan Parent, L. E. (2014) “Availability of three phosphorus fertilizers to corn grown in limed acid-producing mine tailings,” Journal of Bioremediation & Biodegradation, 5(4), hal. 1000229. doi: 10.4172/2155-6199.1000229.

Aleem, A., Isar, J. dan Malik, A. (2003) “Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil,” Bioresource Technology, 86(1), hal. 7–13. doi: 10.1016/S0960-8524(02)00134-7.

Amri, F., Hindersah, R., Kurnani, B., Sunardi, Cahyandito, M. dan Nursyamsi, D. (2020) “Physical and chemical natures of post artisanal gold mine area at Kebunlado Village of Riau Province,” Indonesian Mining Journal, 23(1), hal. 9–19. doi: 10.30556/imj.Vol23.No1.2020.1062.

Armienta, M. A., Beltrán, M., Martínez, S. dan Labastida, I. (2020) “Heavy metal assimilation in maize (Zea mays L.) plants growing near mine tailings,” Environmental Geochemistry and Health, 42(8), hal. 2361–2375. doi: 10.1007/s10653-019-00424-1.

Baral, B. R. dan Adhikari, P. (2014) “Effect of Azotobacter on growth and yield of maize,” SAARC Journal of Agriculture, 11(2), hal. 141–147. doi: 10.3329/sja.v11i2.18409.

Basri, Sakakibara, M. dan Sera, K. (2020) “Mercury in soil and forage plants from artisanal and small-scale gold mining in the Bombana Area, Indonesia,” Toxics, 8(1), hal. 15. doi: 10.3390/toxics8010015.

Brooks, R. R. (2000) “Phytochemistry of hyperaccumulators,” in Brooks, R. R. (ed.) Plants that Hyperaccumulate Heavy Metals. Cambridge: CAB International.

Chang, J., Yang, Q., Dong, J., Ji, B., Si, G., He, F., Li, B. dan Chen, J. (2019) “Reduction in Hg phytoavailability in soil using Hg‐volatilizing bacteria and biochar and the response of the native bacterial community,” Microbial Biotechnology, 12(5), hal. 1014–1023. doi: 10.1111/1751-7915.13457.

Ghosh, S., Sadhukhan, P. C., Ghosh, D. K., Mandal, A. K., Chaudhuri, J. dan Mandal, A. (1996) “Studies on the effect of mercury and organomercurial on the growth and nitrogen fixation by mercury-resistant Azotobacter strains,” Journal of Applied Bacteriology, 80(3), hal. 319–326. doi: 10.1111/j.1365-2672.1996.tb03226.x.

Hindersah, R., Risamasu, R., Kalay, A. M., Dewi, T. dan Makatita, I. (2018) “Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku,” Journal of Degraded and Mining Lands Management, 5(2), hal. 1027–1034. doi: 10.15243/jdmlm.2018.052.1027.

Hindersah, R., Mulyani, O. dan Osok, R. (2017) “Proliferation and exopolysaccharide production of Azotobacter in the presence of mercury,” Biodiversity Journal, 8(1), hal. 21–26.

Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O. dan Ejiogu, I. K. (2018) “Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review,” Journal of Toxicology, 2018, hal. 1–16. doi: 10.1155/2018/2568038.

Jnawali, A. D., Ojha, R. B. dan Marahatta, S. (2015) “Role of Azotobacter in soil fertility and sustainability–a review,” Advances in Plants & Agriculture Research, 2(6), hal. 250–253.

Minardi, S., Harieni, S., Anasrullah, A. dan Purwanto, H. (2017) “Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following organic matters and P fertilizer application on andisol,” IOP Conference Series: Materials Science and Engineering, 193, hal. 012054. doi: 10.1088/1757-899X/193/1/012054.

Mohsenzadeh, F. dan Mohammadzadeh, R. (2018) “Phytoremediation ability of the new heavy metal accumulator plants,” Environmental and Engineering Geoscience, 24(4), hal. 441–450. doi: 10.2113/EEG-2123.

Puli, M. R., Prasad, P. R. K., Jayalakshmi, M. dan Rao, B. S. (2017) “Effect of organic and inorganic sources of nutrients on NPK uptake by rice crop at various growth periods,” Research Journal of Agricultural Sciences, 8(1), hal. 64–69.

Rajaee, S., Alikhani, H. A. dan Raiesi, F. (2007) “Effect of plant growth promoting potentials of Azotobacter chroococcum native strains on growth, yield and uptake of nutrients in wheat,” Journal of Science and Technology of Agriculture and Natural Resources, 11(41), hal. 285–297.

Rasulov, B. A., Yili, A. dan Aisa, H. A. (2013) “Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1,” Journal of Environmental Protection, 04(09), hal. 989–993. doi: 10.4236/jep.2013.49114.

Rizvi, A., Ahmed, B., Zaidi, A. dan Khan, M. S. (2019) “Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum,” Ecotoxicology, 28(3), hal. 302–322. doi: 10.1007/s10646-019-02023-3.

Robson, R. L., Jones, R., Robson, R. M., Schwartz, A. dan Richardson, T. H. (2015) “Azotobacter genomes: The genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412),” PLOS ONE. Diedit oleh J.-F. Pombert, 10(6), hal. e0127997. doi: 10.1371/journal.pone.0127997.

Rubio, E. J., Montecchia, M. S., Tosi, M., Cassán, F. D., Perticari, A. dan Correa, O. S. (2013) “Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production,” The Scientific World Journal, 2013, hal. 1–12. doi: 10.1155/2013/519603.

Sah, S. dan Singh, R. (2015) “Siderophore: Structural and functional characterisation – A comprehensive review,” Agriculture (Polnohospodárstvo), 61(3), hal. 97–114. doi: 10.1515/agri-2015-0015.

Sanders, E. R. (2012) “Aseptic laboratory techniques: Plating methods,” Journal of Visualized Experiments, (63), hal. e3064. doi: 10.3791/3064.

Sulaeman, Suparto dan Eviati (2005) Petunjuk teknis: Analisis kimia tanah, tanaman, air, dan pupuk. Diedit oleh B. H. Pras et al. Boor: Balai Penelitian Tanah.

Sun, G., Feng, X., Yin, R., Zhao, H., Zhang, L., Sommar, J., Li, Z. dan Zhang, H. (2019) “Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment,” Environment International, 131, hal. 104971. doi: 10.1016/j.envint.2019.104971.

Takeuchi, F., Iwahori, K., Kamimura, K., Negishi, A., Maeda, T. dan Sugio, T. (2001) “Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2,” Bioscience, Biotechnology, and Biochemistry, 65(9), hal. 1981–1986. doi: 10.1271/bbb.65.1981.

Terry, N. dan Low, G. (1982) “Leaf chlorophyll content and its relation to the intracellular localization of iron,” Journal of Plant Nutrition, 5(4–7), hal. 301–310. doi: 10.1080/01904168209362959.

de Vries, W., Schütze, G., Lofts, S., Meili, M., Römkens, P. F. A. M., Farret, R., De Temmerman, L. dan Jakubowski, M. (2002) “Critical limits for cadmium, lead and mercury related to ecotoxicological effects on soil organisms, aquatic organisms, plants, animals and humans,” in Schütze, G., Lorenz, U., dan Spranger, T. (ed.) Proceedings Expert Meeting on Critical Limits for Heavy Metals and Methods for Their Application. Berlin, Germany: Wageningen Environmental Research, hal. 29–78.

Widiyawati, I., Sugiyanta, Junaedi, A. dan Widyastuti, R. (2014) “Peran bakteri penambat nitrogen untuk mengurangi dosis pupuk nitrogen anorganik pada padi sawah,” Jurnal Agronomi Indonesia, 42(2), hal. 96–102.

Xiao-feng, J., Na, Z., Yang, W., Qiang, L. dan Jing-jing, Z. (2015) “Accumulation of mercury in soil-maize system of non-ferrous metals smelting area and its related risk assessment,” Chinese Journal of Environmental Science, 36(10), hal. 3845–3851.

Zhang, Y., Li, T., Bei, S., Zhang, J. dan Li, X. (2018) “Growth and distribution of maize roots in response to nitrogen accumulation in soil profiles after long-term fertilization management on a calcareous soil,” Sustainability, 10(11), hal. 4315. doi: 10.3390/su10114315.

Unduhan

Diterbitkan

2021-01-31

Cara Mengutip

Hindersah, R., Nurhabibah, G. dan Harryanto, R. (2021) “INOKULASI AZOTOBACTER DAN APLIKASI KOMPOS UNTUK BIOREMEDIASI TAILING TERKONTAMINASI MERKURI”, Jurnal Teknologi Mineral dan Batubara, 17(1), hlm. 39–46. doi: 10.30556/jtmb.Vol17.No1.2021.1142.