OPTIMALISASI PROSES PEMURNIAN SILIKON TINGKAT METALURGI MENGGUNAKAN CAMPURAN LARUTAN ASAM HCl DAN HF

Penulis

  • Bintang Adjiantoro Pusat Penelitian Metalurgi dan Material - LIPI
  • M. Yunan Hasbi Pusat Penelitian Metalurgi dan Material - LIPI
  • Efendi Mabruri Pusat Penelitian Metalurgi dan Material - LIPI
  • Sigit D. Yudanto Pusat Penelitian Metalurgi dan Material - LIPI
  • Nurhayati I. Ciptasari Pusat Penelitian Metalurgi dan Material - LIPI
  • Septian A. Chandra Pusat Penelitian Metalurgi dan Material - LIPI

DOI:

https://doi.org/10.30556/jtmb.Vol14.No1.2018.148

Kata Kunci:

silikon tingkat metalurgi, pelindian, efisiensi ekstraksi, efektivitas larutan

Abstrak

Telah dilakukan percobaan pemurnian Metallurgical Grade Silicon (MG-Si) atau silikon tingkat metalurgi melalui proses pelindian. Proses pelindian menggunakan campuran larutan asam pada konsentrasi 2,45 mol/L HCl + 1,2 mol/L HF yang dilakukan dengan memvariasikan waktu pelindian pada suhu 60°C dengan kecepatan putar 300 rpm. Hasil percobaan menunjukkan bahwa proses pelindian MG-Si dengan menggunakan campuran larutan asam pada konsentrasi 2,45M HCl + 1,2M HF dapat menurunkan unsur pengotor yang terkandung di dalam MG-Si dan meningkatkan kemurnian seiring peningkatan waktu pelindian. Pada proses pelindian 12 jam, efisiensi ekstraksi unsur pengotor Al dan Fe mencapai 99,99%, sedangkan untuk unsur Ti mencapai 99,96%. Persentase efektivitas dari larutan pelindian selama 12 jam mencapai 99,96%.Pencapaian tersebut berpeluang untuk ditingkatkan dengan memvariasikan konsentrasi maupun waktu pelindian sehingga diperoleh nilai optimal.

Biografi Penulis

M. Yunan Hasbi, Pusat Penelitian Metalurgi dan Material - LIPI

Anggota dalam kelompok penelitian Bidang Energi dan Bidang Pengembangan Baja Laterit

Referensi

Cai, J., Luo, X., Lu, C., Hssrberg, G. M., Laurent, A., Kongstein, O. E. and Wang, S. (2012) “Purification of metallurgical grade silicon by electrorefining in molten salts,” Transactions of Nonferrous Metals Society of China. The Nonferrous Metals Society of China, 22(12), pp. 3103–3107. doi: 10.1016/S1003-6326(11)61577-X.

Compaan, A. D. (2006) “Photovoltaics : Clean power for the 21st century,” 90, pp. 2170–2180. doi: 10.1016/j.solmat.2006.02.017.

Hu, L., Wang, Z., Gong, X., Guo, Z. and Zhang, H. (2013) “Purification of metallurgical-grade silicon by Sn–Si refining system with calcium addition,” Separation and Purification Technology. Elsevier B.V., 118, pp. 699–703. doi: 10.1016/j.seppur.2013.08.013.

Jian, Z., Tingju, L., Xiaodong, M., Dawei, L. and Ning, L. (2009) “Optimization of the acid leaching process by using an ultrasonic field for metallurgical grade silicon∗,” 30(5), pp. 1–6. doi: 10.1088/1674-4926/30/5/053002.

Ma, X., Zhang, J., Wang, T. and Li, T. (2009) “Hydrometallurgical purification of metallurgical grade silicon,” Rare Metals, 28(3), pp. 221–225. doi: 10.1007/s12598-009-0043-1.

Martorano, M. A., Neto, J. B. F., Oliveira, T. S. and Tsubaki, T. O. (2011) “Refining of metallurgical silicon by directional solidification,” Materials Science and Engineering: B. Elsevier B.V., 176(3), pp. 217–226. doi: 10.1016/j.mseb.2010.11.010.

Powerweb (2016) Wind Energy and Solar | Installed GW Capacity - Global and by Country, www.fi-powerweb.com. Available at: http://www.fi-powerweb.com/Renewable-Energy.html (Accessed: July 17, 2017).

Sarti, D. and Einhaus, R. (2002) “Silicon feedstock for the multi-crystalline photovoltaic industry,” Solar Energy Materials and Solar Cells, 72(1–4), pp. 27–40. doi: 10.1016/S0927-0248(01)00147-7.

Silicor Materials (2015) The silicor process: Environmentally friendly solar silicon, www.silicormaterials.com. Available at: http://www.silicormaterials.com/component/docman/doc_download/5-environmental-white-paper.html (Accessed: January 12, 2018).

Sun, Y.-H., Ye, Q.-H., Guo, C.-J., Chen, H.-Y., Lang, X., David, F., Luo, Q.-W. and Yang, C.-M. (2013) “Purification of metallurgical-grade silicon via acid leaching, calcination and quenching before boron complexation,” Hydrometallurgy. Elsevier B.V., 139, pp. 64–72. doi: 10.1016/j.hydromet.2013.07.002.

Takiguchi, H. (2011) “Global flow analysis of crystalline silicon,” in Basu, S. (ed.) Crystalline Silicon - Properties and Uses. InTech. doi: 10.5772/23573.

Tan, Y., Ren, S., Shi, S., Wen, S., Jiang, D., Dong, W., Ji, M. and Sun, S. (2014) “Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification,” Vacuum. Elsevier Ltd, 99, pp. 272–276. doi: 10.1016/j.vacuum.2013.06.015.

Tavengwa, N. T., Cukrowska, E. and Chimuka, L. (2015) “Selective adsorption of uranium (VI) on NaHCO3 leached composite γ-Methacryloxypropyltrimethoxysilane coated magnetic Ion-imprinted polymers prepared by precipitation polymerization,” South African Journal of Chemistry, 68, pp. 61–68. doi: 10.17159/0379-4350/2015/v68a10.

Visnovec, K., Variawa, C., Utigard, T. and Mitrašinović, A. (2013) “Elimination of impurities from the surface of silicon using hydrochloric and nitric acid,” Materials Science in Semiconductor Processing, 16(1), pp. 106–110. doi: 10.1016/j.mssp.2012.06.009.

Yoshikawa, T. and Morita, K. (2012) “An evolving method for solar-grade silicon production: Solvent refining,” JOM, 64(8), pp. 946–951. doi: 10.1007/s11837-012-0371-8.

Zhang, L., Tan, Y., Li, J., Liu, Y. and Wang, D. (2013) “Study of boron removal from molten silicon by slag refining under atmosphere,” Materials Science in Semiconductor Processing. Elsevier, 16(6), pp. 1645–1649. doi: 10.1016/j.mssp.2013.04.012.

Zhao, L., Wang, Z., Guo, Z. and Li, C. (2011) “Low-temperature purification process of metallurgical silicon,” Transactions of Nonferrous Metals Society of China. The Nonferrous Metals Society of China, 21(5), pp. 1185–1192. doi: 10.1016/S1003-6326(11)60841-8.

Unduhan

Diterbitkan

2018-01-22

Cara Mengutip

Adjiantoro, B., Hasbi, M. Y., Mabruri, E., Yudanto, S. D., Ciptasari, N. I. dan Chandra, S. A. (2018) “OPTIMALISASI PROSES PEMURNIAN SILIKON TINGKAT METALURGI MENGGUNAKAN CAMPURAN LARUTAN ASAM HCl DAN HF”, Jurnal Teknologi Mineral dan Batubara, 14(1), hlm. 47–57. doi: 10.30556/jtmb.Vol14.No1.2018.148.