INVESTIGASI KEBERADAAN DAN KETERKAITAN UNSUR KELUMIT PADA BATUBARA FORMASI MANUMBAR PIT Y-2 DI CEKUNGAN KUTAI, KALIMANTAN TIMUR

Penulis

  • Akhmad Khahlil Gibran Jurusan Teknik Geologi, Fakultas Teknik, Universitas Jenderal Soedirman http://orcid.org/0000-0002-5453-9496
  • Prasetyo PT Timah
  • Eko Bayu Purwasatriya Jurusan Teknik Geologi, Fakultas Teknik, Universitas Jenderal Soedirman
  • Didik Jati Mulyanto PT. Indexim Coalindo, Sahid Sudirman Centre, Kota Jakarta Pusat

DOI:

https://doi.org/10.30556/jtmb.Vol21.No1.2025.1481

Kata Kunci:

cekungan Kutai, kemostratigrafi, kadar sulfur, kandungan abu, unsur kelumit

Abstrak

Cekungan Kutai yang terkenal sebagai cekungan penghasil batubara merupakan salah satu cekungan terbesar di Indonesia. Batubara terdiri dari beberapa unsur penyusun antara lain unsur primer, unsur kelumit, maseral, mineral pengotor, dan komponen lainnya. Penelitian ini bertujuan untuk melakukan penyelidikan rinci terhadap komposisi unsur batubara, dengan fokus khusus pada unsur kelumit. Tujuan dari penelitian ini adalah untuk mengetahui sifat unsur, potensi, dan konsentrasi unsur kelumit dalam batubara, serta hubungannya dengan nilai total sulfur dan kandungan abu. Pemeriksaan menggunakan ICP-OES (Induktif Coupled Plasma – Optical Emission Spectrometer), dilakukan terhadap 11 lapisan batubara PIT Y-2 untuk menilai keberadaan unsur kelumit, unsur utama, nilai total sulfur, dan kandungan abu. Temuan penelitian menjelaskan bahwa distribusi dan konsentrasi elemen kelumit pada grafik analisis kemostratigrafi dikategorikan menjadi lima fitur berbeda, yang kemudian direpresentasikan sebagai kemozon. Selain itu, diketahui bahwa kemozon 3 menunjukkan potensi paling besar, karena semua elemen mengalami pengkayaan substansial di area ini dengan total 304,88 ppm di sampel pada seam E18U1. Telah diketahui bahwa beberapa elemen menunjukkan korelasi dengan fluktuasi keseluruhan konsentrasi sulfur dan abu yang ditemukan dalam batubara. Unsur kelumit Cd, Mn, dan Pb memiliki korelasi positif dengan variasi kadar total sulfur, sedangkan Cr, Cu, Pb, dan V berhubungan dengan korelasi positif terhadap perubahan nilai kandungan abu. Studi ini meningkatkan pemahaman kita mengenai distribusi spasial dan kelimpahan unsur kelumit dalam batubara dari wilayah penghasil batubara terbesar di Indonesia. Data ini dapat dimanfaatkan untuk membangun model geokimia dan stratigrafi yang lebih tepat dalam penelitian selanjutnya.

Biografi Penulis

Akhmad Khahlil Gibran, Jurusan Teknik Geologi, Fakultas Teknik, Universitas Jenderal Soedirman

Jurusan Teknik Geologi, Dosen dan Peneliti

Prasetyo, PT Timah

 

 

 

Eko Bayu Purwasatriya, Jurusan Teknik Geologi, Fakultas Teknik, Universitas Jenderal Soedirman

 

 

Didik Jati Mulyanto, PT. Indexim Coalindo, Sahid Sudirman Centre, Kota Jakarta Pusat

 

 

 

Referensi

Albut, G., Kamber, B.S., Brüske, A., Beukes, N.J., Smith, A.J.B. dan Schoenberg, R. (2019) “Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa,” Geochimica et Cosmochimica Acta, 265, hal. 330–353. Tersedia pada: https://doi.org/10.1016/j.gca.2019.09.001.

Algeo, T.J. dan Liu, J. (2020) “A re-assessment of elemental proxies for paleoredox analysis,” Chemical Geology, 540(December 2019), hal. 119549. Tersedia pada: https://doi.org/10.1016/j.chemgeo.2020.119549.

Anggara, F., Patria, A.A., Rahmat, B., Wibisono, H., Putera, M.Z.J., Petrus, H.T.B.M., Erviana, F., Handini, E. dan Amijaya, D.H. (2024) “Signature characteristics of coal geochemistry from the Eocene Tanjung Formation and the Miocene Warukin Formation, Barito Basin: Insights into geological control on coal deposition and future critical element prospection,” International Journal of Coal Geology, 282, hal. 104423. Tersedia pada: https://doi.org/10.1016/j.coal.2023.104423.

Balaram, V. (2019) “Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact,” Geoscience Frontiers, 10(4), hal. 1285–1303. Tersedia pada: https://doi.org/10.1016/j.gsf.2018.12.005.

Bennett, W.W. dan Canfield, D.E. (2020) “Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments,” Earth-Science Reviews, 204, hal. 103175. Tersedia pada: https://doi.org/10.1016/j.earscirev.2020.103175.

Chakraborty, P., Wood, D.A., Singh, S. dan Hazra, B. (2023) “Trace element contamination in soils surrounding the open-cast coal mines of eastern Raniganj basin, India,” Environmental Geochemistry and Health, 45(10), hal. 7275–7302. Tersedia pada: https://doi.org/10.1007/s10653-023-01556-1.

Chen, W., Kemp, D.B., Newton, R.J., He, T., Huang, C., Cho, T. dan Izumi, K. (2022) “Major sulfur cycle perturbations in the Panthalassic Ocean across the Pliensbachian-Toarcian boundary and the Toarcian Oceanic Anoxic Event,” Global and Planetary Change, 215, hal. 103884. Tersedia pada: https://doi.org/10.1016/j.gloplacha.2022.103884.

Cui, W., Meng, Q., Feng, Q., Zhou, L., Cui, Y. dan Li, W. (2019) “Occurrence and release of cadmium, chromium, and lead from stone coal combustion,” International Journal of Coal Science & Technology, 6(4), hal. 586–594. Tersedia pada: https://doi.org/10.1007/s40789-019-00281-4.

Dai, S., Bechtel, A., Eble, C.F., Flores, R.M., French, D., Graham, I.T., Hood, M.M., Hower, J.C., Korasidis, V.A., Moore, T.A., Püttmann, W., Wei, Q., Zhao, L. dan O’Keefe, J.M.K. (2020) “Recognition of peat depositional environments in coal: A review,” International Journal of Coal Geology, 219, hal. 103383. Tersedia pada: https://doi.org/10.1016/j.coal.2019.103383.

Dai, S., Luo, Y., Seredin, V. V., Ward, C.R., Hower, J.C., Zhao, L., Liu, S., Zhao, C., Tian, H. dan Zou, J. (2014) “Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements,” International Journal of Coal Geology, 122, hal. 110–128. Tersedia pada: https://doi.org/10.1016/j.coal.2013.12.016.

Farkaš, J., Frýda, J. dan Holmden, C. (2016) “Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion,” Earth and Planetary Science Letters, 451, hal. 31–40. Tersedia pada: https://doi.org/10.1016/j.epsl.2016.06.038.

Finkelman, R.B. (1993) “Trace and minor elements in coal,” in, hal. 593–607. Tersedia pada: https://doi.org/10.1007/978-1-4615-2890-6_28.

Finkelman, R.B., Palmer, C.A. dan Wang, P. (2018) “Quantification of the modes of occurrence of 42 elements in coal,” International Journal of Coal Geology, 185, hal. 138–160. Tersedia pada: https://doi.org/10.1016/j.coal.2017.09.005.

Gluskoter, H.J. (1975) “Mineral matter and trace elements in coal,” in S.P. Babu (ed.) Trace Elements in Fuel. Washington DC: American Chemical Society, hal. 1–22. Tersedia pada: https://doi.org/10.1021/ba-1975-0141.ch001.

Heriawan, M.N., Pillayati, P., Widodo, L.E. dan Widayat, A.H. (2020) “Drill hole spacing optimization of non-stationary data for seam thickness and total sulfur: A case study of coal deposits at Balikpapan Formation, Kutai Basin, East Kalimantan,” International Journal of Coal Geology, 223, hal. 103466. Tersedia pada: https://doi.org/10.1016/j.coal.2020.103466.

Li, Y., Lu, Z., Yang, H., Jin, L. dan Hu, H. (2022) “Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal,” Journal of Fuel Chemistry and Technology, 50(1), hal. 11–18. Tersedia pada: https://doi.org/10.1016/S1872-5813(21)60115-9.

Liu, L., Ren, S., Yang, J., Jiang, D., Guo, J., Pu, Y. dan Meng, X. (2022) “Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue,” Energy, 251, hal. 123950. Tersedia pada: https://doi.org/10.1016/j.energy.2022.123950.

Nalbandian, H. (2012) Trace element emissions from coal, Profiles.

Ocubalidet, S.G., Rimmer, S.M. dan Conder, J.A. (2018) “Redox conditions associated with organic carbon accumulation in the Late Devonian New Albany Shale, west-central Kentucky, Illinois Basin,” International Journal of Coal Geology, 190, hal. 42–55. Tersedia pada: https://doi.org/10.1016/j.coal.2017.11.017.

Patria, A.A., Suhendra, R., Anggara, F., Agangi, A., Obrochta, S.P. dan Setiawan, I. (2024) “Association and textural-compositional evolution of pyrite-organic matter in coals of the Tarakan, Barito, and Pasir Basins, Kalimantan, Indonesia,” International Journal of Coal Geology, 282, hal. 104442. Tersedia pada: https://doi.org/10.1016/j.coal.2023.104442.

Patricia, G.R.O., Blandón, A., Perea, C. dan Mastalerz, M. (2020) “Petrographic characterization, variations in chemistry, and paleoenvironmental interpretation of Colombian coals,” International Journal of Coal Geology, 227, hal. 103516. Tersedia pada: https://doi.org/10.1016/j.coal.2020.103516.

Pecorari, M., Caggiati, M., Dal Corso, J., Cruciani, G., Tateo, F., Chu, D. dan Gianolla, P. (2023) “Weathering and sea level control on siliciclastic deposition during the Carnian Pluvial Episode (Southern Alps, Italy),” Palaeogeography, Palaeoclimatology, Palaeoecology, 617(October 2022), hal. 111495. Tersedia pada: https://doi.org/10.1016/j.palaeo.2023.111495.

Pedernera, T.E., Mancuso, A.C. dan Ottone, E.G. (2022) “Triassic paleoclimate and paleofloristic trends of southwestern Gondwana (Argentina),” Journal of South American Earth Sciences, 116, hal. 103852. Tersedia pada: https://doi.org/10.1016/j.jsames.2022.103852.

Peng, Yang, Peng, Yongbo, Lang, X., Ma, H., Huang, K., Li, F. dan Shen, B. (2016) “Marine carbon-sulfur biogeochemical cycles during the steptoean positive carbon isotope excursion (SPICE) in the Jiangnan Basin, South China,” Journal of Earth Science, 27(2), hal. 242–254. Tersedia pada: https://doi.org/10.1007/s12583-016-0694-4.

Ramkumar, M. (2015a) Chemostratigraphy, Chemostratigraphy: Concepts, Techniques, and Applications. Elsevier. Tersedia pada: https://doi.org/10.1016/C2013-0-09872-6.

Ramkumar, M. (2015b) “Toward standardization of terminologies and recognition of chemostratigraphy as a formal stratigraphic method,” in Chemostratigraphy. Elsevier, hal. 1–21. Tersedia pada: https://doi.org/10.1016/B978-0-12-419968-2.00001-7.

Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J. dan Lyons, T.W. (2003) “A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin,” Chemical Geology, 195(1–4), hal. 229–273. Tersedia pada: https://doi.org/10.1016/S0009-2541(02)00397-2.

Sumardi, D. dan Darijanto, T. (1998) “Darmawan Sumardi Totok Darijanto,” Proceeding ITB, 30(3), hal. 31–40.

Sun, B., Zhu, R., Shi, Y., Zhang, W., Zhou, Z., Ma, D., Wang, R., Dai, H. dan Che, C. (2024) “Effects of coal-fired power plants on soil microbial diversity and community structures,” Journal of Environmental Sciences, 137, hal. 206–223. Tersedia pada: https://doi.org/10.1016/j.jes.2023.02.014.

Tribovillard, N., Algeo, T.J., Lyons, T. dan Riboulleau, A. (2006) “Trace metals as paleoredox and paleoproductivity proxies: An update,” Chemical Geology, 232(1–2), hal. 12–32. Tersedia pada: https://doi.org/10.1016/j.chemgeo.2006.02.012.

Valetich, M., Zivak, D., Spandler, C., Degeling, H. dan Grigorescu, M. (2022) “REE enrichment of phosphorites: An example of the Cambrian Georgina Basin of Australia,” Chemical Geology, 588, hal. 120654. Tersedia pada: https://doi.org/10.1016/j.chemgeo.2021.120654.

Vosoughi Moradi, A., Sarı, A. dan Akkaya, P. (2016) “Paleoredox reconstruction of bituminous shales from the Miocene Hançili Formation, Çankırı-Çorum Basin, Turkey: Evaluating the role of anoxia in accumulation of organic-rich shales,” Marine and Petroleum Geology, 78, hal. 136–150. Tersedia pada: https://doi.org/10.1016/j.marpetgeo.2016.09.012.

Wang, C.-L., Jiang, S.-Y. dan Lei, X.-F. (2024) “Mechanism of beryllium mineralization in a granite-pegmatite system: Constraints from ore geology and beryl mineralogy of the large Arskartor Be-Nb-Mo deposit, southern Chinese Altai,” Ore Geology Reviews, 167, hal. 105996. Tersedia pada: https://doi.org/10.1016/j.oregeorev.2024.105996.

Xia, G., Mansour, A., Gentzis, T., Li, G., Carvajal-Ortiz, H., Ocubalidet, S., Yi, F., Yun, C. dan Yi, H. (2021) “Depositional paleoenvironment and source rock characterization across the Toarcian Oceanic Anoxic Event from the eastern Tethys, Tibet, SW China,” International Journal of Coal Geology, 243(November 2020), hal. 103780. Tersedia pada: https://doi.org/10.1016/j.coal.2021.103780.

Zubovic, P., Stadnichenko, T. dan Sheffey, Ν.B. (1961) “Chemical Bases of Minor Element Associations in Coal and Other Carbonaceous Sediments,” in Short Papers in the Geologic and Hydrologic Sciences, Articles 293-435. 424-D ed. Washington: U.S. Geological Survey, hal. D345–D348.

Takaya, Y. et al. (2018) “The tremendous potential of deep-sea mud as a source of rare-earth elements,” Scientific Reports, 8(1), hal. 5763. Tersedia pada: https://doi.org/10.1038/s41598-018-23948-5.

Unduhan

Diterbitkan

2025-01-30

Cara Mengutip

Gibran, A. K., Prasetyo, E. R. R., Purwasatriya, E. B. dan Mulyanto, D. J. (2025) “INVESTIGASI KEBERADAAN DAN KETERKAITAN UNSUR KELUMIT PADA BATUBARA FORMASI MANUMBAR PIT Y-2 DI CEKUNGAN KUTAI, KALIMANTAN TIMUR”, Jurnal Teknologi Mineral dan Batubara, 21(1), hlm. 1–17. doi: 10.30556/jtmb.Vol21.No1.2025.1481.