TINJAUAN TEKNOLOGI PROSES EKSTRAKSI BIJIH NIKEL LATERIT
DOI:
https://doi.org/10.30556/jtmb.Vol17.No3.2021.1156Kata Kunci:
hidrometalurgi, bijih nikel laterit, pirometalurgi, reduksi selektifAbstrak
Bijih nikel laterit merupakan mineral yang mengandung senyawa oksida besi-nikel. Teknologi pengolahan nikel laterit secara umum ada 3 metode yaitu hidrometalurgi, pirometalurgi dan reduksi selektif. Hidrometalurgi merupakan metode yang menggunakan pelindian dan larutan seperti asam untuk mengekstraksi nikel laterit. Metode dengan pelindian asam yang bertekanan adalah metode yang paling optimal untuk mendapatkan nikel dengan grade dan recovery tertinggi. Akan tetapi metode ini memiliki dampak pencemaran lingkungan akibat hasil proses pelindian dan waktu yang lama. Metode yang kedua, yaitu pirometalurgi menggunakan temperatur tinggi sampai 1600°C sehingga membutuhkan banyak energi seperti proses blast furnace. Metode dengan rotary kiln-electric furnace merupakan metode optimal dalam pengembangan nikel laterit. Akan tetapi kekurangannya yaitu tanpa pemisahan pengotor, energi yang besar, serta masih ada permasalahan teknis seperti adanya material yang mengalami melt partial. Metode yang ketiga yaitu reduksi selektif merupakan proses pemisahan dengan menyeleksi terbentuknya besi oksida sehingga mendapatkan kadar nikel yang tinggi tanpa energi yang tinggi. Hal ini disebabkan adanya penambahan aditif untuk menghambat terbentuknya besi dan menurunkan temperatur reduksi. Metode ini sebagai alternatif pengolahan bijih nikel laterit jenis limonit dan saprolit menjadi konsentrat nikel dengan kadar nikel di atas 5 %.Referensi
Agacayak, T., Zedef, V. dan Aras, A. (2016) “Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution,” Journal of Central South University, 23(1), hal. 39–43. doi: 10.1007/s11771-016-3046-8.
Al-Khirbash, S. (2015) “Genesis and mineralogical classification of Ni-laterites, Oman Mountains,” Ore Geology Reviews, 65, hal. 199–212. doi: 10.1016/j.oregeorev.2014.09.022.
Astuti, W., Hirajima, T., Sasaki, K. dan Okibe, N. (2015) “Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure,” Minerals & Metallurgical Processing, 32(3), hal. 176–185.
Astuti, W., Hirajima, T., Sasaki, K. dan Okibe, N. (2016) “Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores,” Hydrometallurgy, 161, hal. 138–151. doi: 10.1016/j.hydromet.2015.12.015.
Bunjaku, A., Kekkonen, M., Taskinen, P. dan Holappa, L. (2011) “Thermal behaviour of hydrous nickel–magnesium silicates when heating up to 750°C,” Mineral Processing and Extractive Metallurgy, 120(3), hal. 139–146. doi: 10.1179/1743285511Y.0000000011.
Bunjaku, A., Kekkonen, M., Pietilä, K. dan Taskinen, P. (2012) “Effect of mineralogy and reducing agent on reduction of saprolitic nickel ores,” Mineral Processing and Extractive Metallurgy, 121(3), hal. 156–165. doi: 10.1179/1743285512Y.0000000010.
Cao, C., Xue, Z. dan Duan, H. (2016) “Making ferronickel from laterite nickel ore by coal-based self-reduction and high temperature melting process,” International Journal of Nonferrous Metallurgy, 05(02), hal. 9–15. doi: 10.4236/ijnm.2016.52002.
Chen, G.-J., Shiau, J.-S., Liu, S.-H. dan Hwang, W.-S. (2016) “Optimal combination of calcination and reduction conditions as well as Na2SO4 additive for carbothermic reduction of limonite ore,” MATERIALS TRANSACTIONS, 57(9), hal. 1560–1566. doi: 10.2320/matertrans.M2016072.
Chen, N., Cao, Z.-F., Zhong, H., Fan, F., Qiu, P. dan Wang, M.-M. (2015) “A novel approach for recovery of nickel and iron from nickel laterite ore,” Metallurgical Research & Technology, 112(3), hal. 306. doi: 10.1051/metal/2015015.
Chengyan, W., Fei, Y., Yongqiang, C., Yongqiang, Y., Bu, Y., Wei, G., Zhong, W., Shufeng, R., Jun, W., Nianwei, W., Dunfan, L. dan Wu, R. (2008) “Treating method for high magnesium laterite nickel mine.” China.
Elliott, R., Rodrigues, F., Pickles, C. A. dan Peacey, J. (2015) “A two-stage thermal upgrading process for nickeliferous limonitic laterite ores,” Canadian Metallurgical Quarterly, 54(4), hal. 395–405. doi: 10.1179/1879139515Y.0000000009.
Elliott, R. S. B. (2015) A study on the role of sulphur in the thermal upgrading of nickeliferous laterite ores. Queen’s University.
Guang-hui, L., Ming-jun, R., Tao, J., Qing-qing, H., Tang-ming, S. dan Yuan-bo, Z. (2011) “Innovative process for preparing ferronickel materials from laterite ore by reduction roasting-magnetic separation,” The Chinese Journal of Nonferrous Metals, 21(12), hal. 3137–3142.
Guo, Q., Qu, J., Han, B., Zhang, P., Song, Y. dan Qi, T. (2015) “Innovative technology for processing saprolitic laterite ores by hydrochloric acid atmospheric pressure leaching,” Minerals Engineering, 71, hal. 1–6. doi: 10.1016/j.mineng.2014.08.010.
Harris, C. T., Peacey, J. G. dan Pickles, C. A. (2013) “Selective sulphidation and flotation of nickel from a nickeliferous laterite ore,” Minerals Engineering, 54, hal. 21–31. doi: 10.1016/j.mineng.2013.02.016.
Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N. dan Zhang, S. (2013) “Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process,” International Journal of Mineral Processing, 123, hal. 32–38. doi: 10.1016/j.minpro.2013.04.005.
Keskinkilic, E., Pournaderi, S., Geveci, A. dan Topkaya, Y. A. (2012) “Calcination characteristics of laterite ores from the central region of Anatolia,” The Journal of The Southern African Institute of Mining and Metallurgy, 112, hal. 877–882.
Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S. dan Fujita, T. (2010) “Calcination of low-grade laterite for concentration of Ni by magnetic separation,” Minerals Engineering, 23(4), hal. 282–288. doi: 10.1016/j.mineng.2010.01.005.
Kursunoglu, S. dan Kaya, M. (2015) “Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method,” International Journal of Minerals, Metallurgy, and Materials, 22(11), hal. 1131–1140. doi: 10.1007/s12613-015-1177-9.
Kursunoglu, S. dan Kaya, M. (2016) “Atmospheric pressure acid leaching of Caldag lateritic nickel ore,” International Journal of Mineral Processing, 150, hal. 1–8. doi: 10.1016/j.minpro.2016.03.001.
Li, B., Wang, H. dan Wei, Y. (2011) “The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidisation method,” Minerals Engineering, 24(14), hal. 1556–1562. doi: 10.1016/j.mineng.2011.08.006.
Li, G., Tangming, S., Mingjun, R., Tao, J. dan Yuanbo, Z. (2012) “Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate,” Minerals Engineering, 32, hal. 19–26. doi: 10.1016/j.mineng.2012.03.012.
Li, G., Luo, J., Peng, Z., Zhang, Y., Rao, M. dan Jiang, T. (2015) “Effect of quaternary basicity on melting behavior and ferronickel particles growth of saprolitic laterite ores in Krupp–Renn process,” ISIJ International, 55(9), hal. 1828–1833. doi: 10.2355/isijinternational.ISIJINT-2015-058.
Li, J., Xiong, D., Chen, H., Wang, R. dan Liang, Y. (2012) “Physicochemical factors affecting leaching of laterite ore in hydrochloric acid,” Hydrometallurgy, 129–130, hal. 14–18. doi: 10.1016/j.hydromet.2012.08.001.
Liu, Z., Sun, T., Wang, X. dan Gao, E. (2015) “Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore,” International Journal of Minerals, Metallurgy, and Materials, 22(9), hal. 901–906. doi: 10.1007/s12613-015-1148-1.
Lu, J., Liu, S., Shangguan, J., Du, W., Pan, F. dan Yang, S. (2013) “The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore,” Minerals Engineering, 49, hal. 154–164. doi: 10.1016/j.mineng.2013.05.023.
Lv, X., Bai, C., He, S. dan Huang, Q. (2010) “Mineral change of Philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter,” ISIJ International, 50(3), hal. 380–385. doi: 10.2355/isijinternational.50.380.
Ma, B., Wang, C., Yang, W., Yin, F. dan Chen, Y. (2013) “Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate,” Minerals Engineering, 50–51, hal. 106–113. doi: 10.1016/j.mineng.2013.06.014.
Ma, B., Wang, C., Yang, W., Yang, B. dan Zhang, Y. (2013) “Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid,” Minerals Engineering, 45, hal. 151–158. doi: 10.1016/j.mineng.2013.02.009.
Ma, B., Yang, W., Yang, B., Wang, C., Chen, Y. dan Zhang, Y. (2015) “Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores,” Hydrometallurgy, 155, hal. 88–94. doi: 10.1016/j.hydromet.2015.04.016.
Ma, X., Cui, Z. dan Zhao, B. (2016) “Efficient utilization of nickel laterite to produce master alloy,” JOM, 68(12), hal. 3006–3014. doi: 10.1007/s11837-016-2028-5.
MacCarthy, J., Nosrati, A., Skinner, W. dan Addai-Mensah, J. (2016) “Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore,” Hydrometallurgy, 160, hal. 26–37. doi: 10.1016/j.hydromet.2015.11.004.
MacCarthy, J., Addai-Mensah, J. dan Nosrati, A. (2014) “Atmospheric acid leaching of siliceous goethitic Ni laterite ore: Effect of solid loading and temperature,” Minerals Engineering, 69, hal. 154–164. doi: 10.1016/j.mineng.2014.08.005.
McCarthy, F. dan Brock, G. (2015) “Direct nickel – Breakthrough technology,” in 4th International Symposium on Processing of Nickel Ores & Concentrates (Nickel Processing ’15). Falmouth, United Kingdom: Curran Associates, Inc., hal. 127–136.
Meng, L., Qu, J., Guo, Q., Xie, K., Zhang, P., Han, L., Zhang, G. dan Qi, T. (2015) “Recovery of Ni, Co, Mn, and Mg from nickel laterite ores using alkaline oxidation and hydrochloric acid leaching,” Separation and Purification Technology, 143, hal. 80–87. doi: 10.1016/j.seppur.2015.01.012.
Nurjaman, F., Rahmahwati, A., Karimy, M. F., Hastriana, N., Shofi, A., Herlina, U., Suharno, B. dan Ferdian, D. (2019) “The role of sodium-based additives on reduction process of nickel lateritic ore,” IOP Conference Series: Materials Science and Engineering, 478, hal. 012001. doi: 10.1088/1757-899X/478/1/012001.
Pengzheng, S., Wenguang, D., Song, Y., Shoujun, L. dan Ju, S. (2016) “Influence of sodium thiosulfate in the process of reduction roasting and magnetic separation for nickel laterite ore,” Journal of Taiyuan University of Technology, (2), hal. 144–149.
Pickles, C. A., Harris, C. T., Peacey, J. dan Forster, J. (2013) “Thermodynamic analysis of the Fe–Ni–Co–Mg–Si–O–H–S–C–Cl system for selective sulphidation of a nickeliferous limonitic laterite ore,” Minerals Engineering, 54, hal. 52–62. doi: 10.1016/j.mineng.2013.03.029.
Pickles, C. A. dan Elliott, R. (2015) “Thermodynamic analysis of selective reduction of nickeliferous limonitic laterite ore by carbon monoxide,” Mineral Processing and Extractive Metallurgy, 124(4), hal. 208–216. doi: 10.1179/1743285515Y.0000000009.
Pickles, C. A., Forster, J. dan Elliott, R. (2014) “Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore,” Minerals Engineering, 65, hal. 33–40. doi: 10.1016/j.mineng.2014.05.006.
Pournaderi, S., Keskinkılıç, E., Geveci, A. dan Topkaya, Y. A. (2014) “Reducibility of nickeliferous limonitic laterite ore from Central Anatolia,” Canadian Metallurgical Quarterly, 53(1), hal. 26–37. doi: 10.1179/1879139513Y.0000000099.
Prasetyo, P. (2016) “Sumber daya mineral di Indonesia khususnya bijih nikel laterit dan masalah pengolahannya sehubungan dengan UU Minerba 2019,” in Seminar Nasional Sains dan Teknologi 2016. Jakarta: Fakultas Teknik Universitas Muhammadiyah Jakarta, hal. TM-008.
Quast, K., Connor, J. N., Skinner, W., Robinson, D. J. dan Addai-Mensah, J. (2015) “Preconcentration strategies in the processing of nickel laterite ores Part 1: Literature review,” Minerals Engineering, 79, hal. 261–268. doi: 10.1016/j.mineng.2015.03.017.
Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z. dan Jiang, T. (2016a) “Reductive roasting of nickel laterite ore with sodium sulfate for Fe-Ni production. Part I: Reduction/sulfidation characteristics,” Separation Science and Technology, 51(8), hal. 1408–1420. doi: 10.1080/01496395.2016.1162173.
Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z. dan Jiang, T. (2016b) “Reductive roasting of nickel laterite ore with sodium sulphate for Fe-Ni production. Part II: Phase transformation and grain growth,” Separation Science and Technology, 51(10), hal. 1727–1735. doi: 10.1080/01496395.2016.1166134.
Rice, N. M. (2016) “A hydrochloric acid process for nickeliferous laterites,” Minerals Engineering, 88, hal. 28–52. doi: 10.1016/j.mineng.2015.09.017.
Setiawan, I., Harjanto, S., Rustandi, A. dan Subagja, R. (2014) “Reducibility of low nickel lateritic ores with presence of calcium sulfate,” International Journal of Engineering & Technology, 14(4), hal. 56–66.
Sheng-li, C., Xue-yi, G., Wan-tang, S. dan Dong, L. (2010) “Extraction of valuable metals from low-grade nickeliferous laterite ore by reduction roasting-ammonia leaching method,” Journal of Central South University, 17(4), hal. 765−769.
Tang, X., Liu, R., Yao, L., Ji, Z., Zhang, Y. dan Li, S. (2014) “Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore,” International Journal of Minerals, Metallurgy, and Materials, 21(10), hal. 955–961. doi: 10.1007/s12613-014-0995-5.
Valix, M. dan Cheung, W. . (2002) “Effect of sulfur on the mineral phases of laterite ores at high temperature reduction,” Minerals Engineering, 15(7), hal. 523–530. doi: 10.1016/S0892-6875(02)00069-9.
Wang, B., Guo, Q., Wei, G., Zhang, P., Qu, J. dan Qi, T. (2012) “Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia,” Hydrometallurgy, 129–130, hal. 7–13. doi: 10.1016/j.hydromet.2012.06.017.
Warner, A. E. M., Díaz, C. M., Dalvi, A. D., Mackey, P. J. dan Tarasov, A. V. (2006) “JOM world nonferrous smelter survey, part III: Nickel: Laterite,” JOM, 58(4), hal. 11–20. doi: 10.1007/s11837-006-0209-3.
Yang, S. (2013) “Nickel and cobalt recovery from laterite type nickel ore with high pressure acid leaching technology,” Nonferrous Metals(Extractive Metallurgy), (1), hal. 4–7.
Yang, S., Du, W., Shi, P., Shangguan, J., Liu, S., Zhou, C., Chen, P., Zhang, Q. dan Fan, H. (2016) “Mechanistic and kinetic analysis of Na2SO4-Modified laterite decomposition by thermogravimetry coupled with mass spectrometry,” PLOS ONE. Diedit oleh G. Y, 11(6), hal. e0157369. doi: 10.1371/journal.pone.0157369.
Zevgolis, E. N., Zografidis, C., Perraki, T. dan Devlin, E. (2010) “Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide,” Journal of Thermal Analysis and Calorimetry, 100(1), hal. 133–139. doi: 10.1007/s10973-009-0198-x.
Zhang, P., Guo, Q., Wei, G., Meng, L., Han, L., Qu, J. dan Qi, T. (2015) “Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching,” Hydrometallurgy, 157, hal. 149–158. doi: 10.1016/j.hydromet.2015.08.007.
Zheng, G., Zhu, D., Pan, J., Li, Q., An, Y., Zhu, J. dan Liu, Z. (2014) “Pilot scale test of producing nickel concentrate from low-grade saprolitic laterite by direct reduction-magnetic separation,” Journal of Central South University, 21(5), hal. 1771–1777. doi: 10.1007/s11771-014-2123-0.
Zhou, S., Li, B., Wei, Y., Wang, H., Wang, C. dan Ma, B. (2015) “Effect of additives on phase transformation of nickel laterite ore during low-temperature reduction roasting process using carbon monoxide,” in Battle, T. P. et al. (ed.) Drying, Roasting, and Calcining of Minerals. Cham: Springer International Publishing, hal. 177–184. doi: 10.1007/978-3-319-48245-3_22.
Zhu, D. Q., Cui, Y., Vining, K., Hapugoda, S., Douglas, J., Pan, J. dan Zheng, G. L. (2012) “Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation,” International Journal of Mineral Processing, 106–109, hal. 1–7. doi: 10.1016/j.minpro.2012.01.003.
Zulhan, Z. (2020) “Hilirisasi komoditas nikel,” in Webinar Keprofesian Teknik Metalurgi “Masa Depan Nikel Indonesia.” Bandung: Ikatan Alumni Teknik Metalurgi ITB.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Jurnal Teknologi Mineral dan Batubara menyediakan akses terbuka yang pada prinsipnya membuat konten yang tersedia dapat diakses secara gratis untuk umum dan mendukung pertukaran informasi/pengetahuan secara global.

Jurnal Teknologi Mineral dan Batubara berada di bawah lisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Teknolgi Mineral dan Batubara provides immediate open access to its content on the principle that making research freely available to the public to supports a greater global exchange of knowledge.
Jurnal Teknologi Mineral dan Batubara is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.