PENGARUH PENAMBAHAN KATALIS TiO<sub>2</sub> TERHADAP SIFAT KIMIA PERMUKAAN KOMPOSIT KARBON AKTIF UNTUK PENYERAPAN GAS SO<sub>2</sub>
DOI:
https://doi.org/10.30556/jtmb.Vol17.No3.2021.1140Kata Kunci:
TiO2, gugus fungsi, komposit karbon aktif/TiO2, gas SO2Abstrak
Karbon aktif dan TiO2 mereduksi SO2 melalui proses adsorpsi dan fotokatalitik. Kedua senyawa ini memiliki efektivitas adsorpsi rendah. Untuk meningkatkan aktivitas adsorpsi dilakukan kombinasi teknik adsorben dan fotokatalitik sehingga adsorpsi dapat optimal. Kombinasi dilakukan dengan membuat komposit karbon aktif/TiO2. Batubara dan semi-kokas dicampur dengan perbandingan 7:3 kemudian TiO2 ditambahkan dengan konsentrasi 1, 3, 6, 9 dan 15%. Karbon aktif/ TiO2 dikarbonisasi pada suhu 600 °C selama 1 jam dan diaktivasi pada suhu 900 °C selama 1 dan 2 jam di bawah aliran gas nitrogen. Hasil analisis fourier-transform infrared (FTIR) spectroscopy menunjukkan intensitas serapan gugus fungsi C=O naik sebesar 49,5% pada karbon aktif/TiO2 6% selama 1 jam dan 33,2% pada karbon aktif/TiO2 3% selama 2 jam. Gugus fungsi basa C=O mereduksi gas SO2 yang bersifat asam. Hasil X-ray diffraction (XRD) ditemukan kristal TiO2 anatas dan rutil. Koeksistensi kristal anatas dan rutil lebih efektif daripada anatas dan rutil fase tunggal. Hasil penelitian ini menunjukkan bahwa karbon aktif/TiO2 meningkatkan aktivitas gugus fungsi permukaan karbon aktif dan membentuk kristal TiO2 anatas dan rutil secara bersama.Referensi
Agustin, T., Prasetya, N. B. A. dan Widodo, D. S. (2013) “Sintesis komposit TiO2-Karbon aktif untuk fotokatalisis larutan zat warna direct blue 19 dan ion logam Pb2+ dan Cd2+ secara simultan,” Jurnal Kimia Sains dan Aplikasi, 16(3), hal. 102–107. doi: 10.14710/jksa.16.3.102-107.
Aravindan, V., Lee, Y.-S., Yazami, R. dan Madhavi, S. (2015) “TiO2 polymorphs in “rocking-chair” Li-ion batteries,” Materials Today. Elsevier, 18(6), hal. 345–351. doi: 10.1016/j.mattod.2015.02.015.
Barbarelli, S., Florio, G., Amelio, M. dan Scornaienchi, N. M. (2018) “Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents,” Applied Energy, 224, hal. 717–730. doi: 10.1016/j.apenergy.2018.05.029.
Basuki, K. T. (2007) “Penurunan konsentrasi HC dan SO2 pada emisi kendaraan dengan menggunakan TiO2 lokal yang disisipkan karbon aktif,” in Prosiding PPI - PDIPTN 2007. Yogyakarta: BATAN, hal. 105–114.
Cagnon, B., Py, X., Guillot, A. dan Stoeckli, F. (2003) “The effect of the carbonization/activation procedure on the microporous texture of the subsequent chars and active carbons,” Microporous and Mesoporous Materials, 57(3), hal. 273–282. doi: 10.1016/S1387-1811(02)00597-8.
Cai, L.-X., Li, S.-C., Yan, D.-N., Zhou, L.-P., Guo, F. dan Sun, Q.-F. (2018) “Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis,” Journal of the American Chemical Society, 140(14), hal. 4869–4876. doi: 10.1021/jacs.8b00394.
Chen, K., Li, W., Biney, B. W., Li, Z., Shen, J. dan Wang, Z. (2020) “Evaluation of adsorptive desulfurization performance and economic applicability comparison of activated carbons prepared from various carbon sources,” RSC Advances, 10(66), hal. 40329–40340. doi: 10.1039/D0RA07862J.
Ding, L., Wei, J., Dai, Z., Guo, Q. dan Yu, G. (2016) “Study on rapid pyrolysis and in-situ char gasification characteristics of coal and petroleum coke,” International Journal of Hydrogen Energy, 41(38), hal. 16823–16834. doi: 10.1016/j.ijhydene.2016.07.101.
Eliyas, A., Ljutzkanov, L., Stambolova, I., Blaskov, V., Vassilev, S., Razkazova-Velkova, E. dan Mehandjiev, D. (2013) “Visible light photocatalytic activity of TiO2 deposited on activated carbon,” Open Chemistry, 11(3), hal. 464–470. doi: 10.2478/s11532-012-0183-2.
Fan, L., Chen, J., Guo, J., Jiang, X. dan Jiang, W. (2013) “Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell,” Journal of Analytical and Applied Pyrolysis, 104, hal. 353–360. doi: 10.1016/j.jaap.2013.06.014.
Grätzel, M. (2003) “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews. Elsevier, 4(2), hal. 145–153. doi: 10.1016/S1389-5567(03)00026-1.
Huang, S., Wu, S., Wu, Y. dan Gao, J. (2017) “Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash,” Energy Conversion and Management, 136, hal. 108–118. doi: 10.1016/j.enconman.2016.12.091.
Ishii, J., Asanuma, M., Murai, R. dan Sumi, I. (2019) “Development of a binder manufacturing process for molded coal utilizing used plastics,” ISIJ International, 59(4), hal. 665–671. doi: 10.2355/isijinternational.ISIJINT-2018-344.
Ou, H. W., Fang, M. L., Chou, M. S., Chang, H. Y. dan Shiao, T. F. (2020) “Long-term evaluation of activated carbon as an adsorbent for biogas desulfurization,” Journal of the Air & Waste Management Association, 70(6), hal. 641–648. doi: 10.1080/10962247.2020.1754305.
Przepiórski, J. (2005) “Deposition of additives onto surface of carbon materials by blending method—general conception,” Materials Chemistry and Physics, 92(1), hal. 1–4. doi: 10.1016/j.matchemphys.2005.01.010.
Pujiono, F. E., Mulyati, T. A. dan Fizakia, M. N. (2020) “Activated carbon of coconut shell modified TiO2 as a batik waste treatment,” Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 11(2), hal. 1–10. doi: 10.21771/jrtppi.2020.v11.no2.p1-10.
Rissa, L. V., Priatmoko, S. dan Harjito (2012) “Sintesis lapis tipis berbasis nanopartikel titania termodifikasi silika secara sol-gel sebagai bahan antifogging,” Jurnal MIPA Unnes, 35(1), hal. 57–65.
Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S. dan Jesionowski, T. (2018) “TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity,” Materials, 11(5), hal. 841. doi: 10.3390/ma11050841.
Subagja, R., Royani, A., Suharyanto, A., Andriyah, L. dan Natasha, N. C. (2017) “Pengaruh temperatur dan waktu kalsinasi terhadap perubahan fasa TiO2,” Metalurgi, 29(3), hal. 245. doi: 10.14203/metalurgi.v29i3.298.
Sun, Z., Wang, M., Fan, J., Zhou, Y. dan Zhang, L. (2020) “Regeneration performance of activated carbon for desulfurization,” Applied Sciences, 10(17), hal. 6107. doi: 10.3390/app10176107.
Treeweranuwat, P., Boonyoung, P., Chareonpanich, M. dan Nueangnoraj, K. (2020) “Role of nitrogen on the porosity, surface, and electrochemical characteristics of activated carbon,” ACS Omega, 5(4), hal. 1911–1918. doi: 10.1021/acsomega.9b03586.
Xing, B., Shi, C., Zhang, C., Yi, G., Chen, L., Guo, H., Huang, G. dan Cao, J. (2016) “Preparation of TiO 2 /activated carbon composites for photocatalytic degradation of RhB under UV light irradiation,” Journal of Nanomaterials, 2016, hal. 1–10. doi: 10.1155/2016/8393648.
Xiong, J., Zhu, W., Li, Hongping, Yang, L., Chao, Y., Wu, P., Xun, S., Jiang, W., Zhang, M. dan Li, Huaming (2015) “Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels,” Journal of Materials Chemistry A, 3(24), hal. 12738–12747. doi: 10.1039/C5TA01346A.
Xu, M., Wang, Y., Geng, J. dan Jing, D. (2017) “Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor,” Chemical Engineering Journal, 307, hal. 181–188. doi: 10.1016/j.cej.2016.08.080.
Xue, D.-M., Qi, S.-C., Zeng, Q.-Z., Lu, R.-J., Long, J.-H., Luo, C., Liu, X.-Q. dan Sun, L.-B. (2019) “Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor: Record-high adsorption capacity for indole,” Chemical Engineering Journal, 374, hal. 1005–1012. doi: 10.1016/j.cej.2019.06.024.
Yang, L., Jiang, X., Yang, Z.-S. dan Jiang, W.-J. (2015) “Effect of MnSO 4 on the removal of SO 2 by manganese-Modified activated coke,” Industrial & Engineering Chemistry Research, 54(5), hal. 1689–1696. doi: 10.1021/ie503729a.
Yang, Y., Lv, G., Deng, L., Lu, B., Li, J., Zhang, J., Shi, J. dan Du, S. (2017) “Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation,” Journal of Cleaner Production, 161, hal. 422–430. doi: 10.1016/j.jclepro.2017.05.112.
Zhang, C., Yang, D., Jiang, X. dan Jiang, W. (2016) “Desulphurization performance of TiO 2 -modified activated carbon by a one-step carbonization-activation method,” Environmental Technology. Taylor & Francis, 37(15), hal. 1895–1905. doi: 10.1080/09593330.2015.1135991.
Zhang, Q., Gao, L. dan Guo, J. (2000) “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis,” Applied Catalysis B: Environmental, 26(3), hal. 207–215. doi: 10.1016/S0926-3373(00)00122-3.
Zhao, Y., Dou, J., Duan, X., Chai, H., Oliveira, J. dan Yu, J. (2020) “Adverse effects of inherent CaO in coconut shell-Derived activated carbon on its performance during flue gas desulfurization,” Environmental Science & Technology, 54(3), hal. 1973–1981. doi: 10.1021/acs.est.9b06689.
Zustriani, A. K. (2019) “Pengaruh aktivasi adsorben biji pepaya terhadap adsorpsion logam besi (Fe) dan tembaga (Cu) dalam air limbah,” Integrated Lab Journal, 7(1), hal. 29–43. doi: 10.5281/zenodo.2656804.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Jurnal Teknologi Mineral dan Batubara menyediakan akses terbuka yang pada prinsipnya membuat konten yang tersedia dapat diakses secara gratis untuk umum dan mendukung pertukaran informasi/pengetahuan secara global.

Jurnal Teknologi Mineral dan Batubara berada di bawah lisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Teknolgi Mineral dan Batubara provides immediate open access to its content on the principle that making research freely available to the public to supports a greater global exchange of knowledge.
Jurnal Teknologi Mineral dan Batubara is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.