PENGARUH PENAMBAHAN ION Ag+ TERHADAP LAJU BIOOKSIDASI MINERAL SULFIDA

Penulis

  • SRI HANDAYANI Puslitbang Teknologi Mineral dan Batubara

DOI:

https://doi.org/10.30556/jtmb.Vol8.No2.2012.796

Kata Kunci:

biooksidasi, mineral sulfida, Acidithiobacillus ferrooxidans, katalis, ion Ag

Abstrak

Biooksidasi merupakan metode alternatif pelindian mineral sulfida yang telah diaplikasikan secara komersial namun kinetika prosesnya masih sangat lambat. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan ion Ag+ sebagai katalis terhadap laju pelarutan logam-logam bukan besi yang terkandung dalam mineral sulfida, terutama Zn dan Cu. Percobaan dilakukan menggunakan Acidithiobacillus ferrooxidans dalam kondisi persen padatan 10%, inokulan 5%, pH awal 2,0, temperatur kamar (24-26°C), pengadukan 150 rpm, variasi konsentrasi Ag+ 0,005; 0,01; 0,02 dan 0,04 g/L. Hasil percobaan menunjukkan tanpa ion Ag+, Zn dapat terlindi dengan baik hingga 94,1% dalam waktu 10 hari, tetapi penambahan ion Ag+ tidak dapat meningkatkan lagi ekstraksi Zn, bahkan cenderung menghambatnya. Sebaliknya, penambahan ion Ag+ dalam konsentrasi yang optimal (0,02 g/L) memberi pengaruh sangat positif terhadap ekstraksi Cu, dengan ekstraksi maksimum 80,6% setelah 10 hari dibandingkan hanya 30,2% pada kondisi tanpa penambahan ion Ag+, berarti peningkatan ekstraksi sebesar 167%. Konsentrasi ion Ag+ lebih tinggi dari 0,02 g/L menghambat ekstraksi Cu karena diduga bersifat toksik yang menghambat pertumbuhan dan aktivitas bakteri.

Referensi

Ballester, A., Blazquez, M.L., Gonzales, F., and Muzoz, J.A., 2007. Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. Dalam: Microbial processing of metal sulphides (E.R. Donati dan W. Sand eds.), Springer, p. 77-101.

Bolorunduro, S.A., Dreisinger, D.B., and Van Weert, G., 2003. Fundamental study of silver deportment during the pressure oxidation of sulfide ores and concentrates. Miner Eng 16, p. 695-708.

Chen, S., Qin, W., and Qiu, G., 2008. Effect of Cu2+ ions on bioleaching of marmatite. Transaction of Nonferrous Metals Society of China Vol. 18, Issue 6, p. 1518-1522.

Guo, P., Zhang, G., Cao, J., Li, Y., Fang, Z. and Yang, C., 2010. Catalytic effect of Ag2+ and Cu2+ on leaching realgar As2S2, Hydrometallurgy Vol. 106, issue 1-2 February, p. 99-103.

Hiroyoshi, N., Arai, M., Miki, H., Tsunekawa, M., and Hirajima, T., 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leach- ing in sulphuric acid solution. Hydrometallurgy Vol 63, issue 3 March, p. 257-267.

Horta, D.G., Acciari, H.A., Bevilaqua, D., Benedetti, A.V., Garcia. O., 2009. The effect of chloride ions and A. ferrooxidans on the oxidative dissolution of the calcopyrite evaluated by electrochemical noise analyses (ENA). Advanced Materials Research Vol 71-73, p. 397-400.

Lemesle-Meunier, D., Brasseur, G., Tron, P., Bennaroch, D., Nitschke, W., Elbehti, A., 2001. The membrane- bound c type cytochromes and the interaction

between the downhill and uphill electron transfer pathways in the acidophilic chemolithotrophic fer- rous ion oxidizing bacterium Thiobacillus ferrooxi- dans. In: Ciminelli VST Garcia O. Jr (eds) Process Metallurgy vol 9A, Elsevier, Amsterdam.

Liu, J., Li, D., Zhang, S., Li, D., and Yu, L., 2011. The effect of silver ion catalysis on bioleaching of chal- copyrite tailings. Applied Mechanics and Materials Vol 84-85, p. 635-640.

Lu, L.L., Li, D.W., and Yu, L.,2011. Study on intensified bioleaching technology by static magnetic field of chalcopyrite tailings. Applied Mechanics and Materials vol. 84-85, p.476-479.

Medvedev, D. and Stuchebrukhov, A.A., 2001. DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH to DNA thymine dimer, J Ther Biol 210, p. 237-248.

Meruane G., Salhe C., Wiertz J., Vargas T., 2002. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng 80:280–288.

Mulak, W., Chojnacka, M., Wawrarzak, D., 2001. Mecha- nism of catalytic action of cupric ions in ferric salts leaching of millerite. Physicochemical Problems of Mineral Processing 35, p. 67-72.

Neale, J.W., Gericke, M., and Ramcharan, K., 2011. The application of bioleaching to base metal sulfides in Southern Africa: Prospects and opportunities, 6th Southern African Base Metal Conference, The Southern African Institute of Mining and Metal- lurgy.

Okibe, N., Gericke, M., Hallberg, K.B., and Johnson, D.B., 2003. Enumeration and characterization of Acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl En- viron Microbiol. 69(4), p.1936–1943.

Olson G.J., Brierley J.A., Brierley C.L. , 2003. Progress in bioleaching: Applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol. Vol 63, no.3, p. 249-257.

Rawling, D., and Johnson, D.B., 2007. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiol- ogy vol. 153 no. 2, p. 315-324.

Rohwender, T., Gehrke, T., Kinzler, K., and Sand, W., 2003. Bioleaching review part A : Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol Biotechnol 63, p. 239-248.

Rohwerder T., Sand W., 2003. The sulfate sulfur of per- sulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699-1709 p.

Rzhepishevska, O.I., Lindström, E.B., Tuovinen, O.H., and Dopson, M., 2005. Bioleaching of sulfidic tail- ing samples with a novel, vacuum-positive pressure driven bioreactor. Biotechnology and Bioengineer- ing Vol 92, Issue 5, p. 559-567.

Soleimani, M., Hosseini, S.,Roostaazad, R., Petersen, J., Vasiri, A.K., 2009. Microbial leaching of a low- grade sphalerite ore using a draft tube fluidized bed bioreactor. Hydrometallurgy 99, p. 131–136.

Tay, P.R., and Anderson, C.G., 2008. Technology and Engineering, in: Proceeedings of the Sixth Interna- tional Symposium of Hydrometallurgy, C.A Young eds. p. 645-651.

van Hille R P, Bromfield L.V., Botha S.S., Jones G., van Zyl A.W. and Harrison S T L, 2009. The effect of nutrient supplementation on growth and leaching performance of bioleaching bacteria. Proceedings of the 18th International Biohydrometallkurgy Symposium (Eds. Donati ER, Viera MR, Tavani EL, Giaveno MA, Lavalle TL and Chiacchiarini). Trans Tech Publications. p. 413-416.

Yang, T., Lyons, S., Aguilar, C., Cuhel, R., and Teske, A., 2011. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters. Frontiers in Microbial Physiology and Metabolism Vol 2.

Yuehua, H., Guanzhou, Q., Jun, W., Dianzuo, W., 2002. The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy 64, p. 81-88.

Weimin., Z., Shifei, G., 2007. Catalytic effect of silver ion on the bioleaching of low grade chalcopyrite ore from Yongping Copper Mine, Mining Research and Development (06).

Unduhan

Cara Mengutip

HANDAYANI, S. (2018) “PENGARUH PENAMBAHAN ION Ag+ TERHADAP LAJU BIOOKSIDASI MINERAL SULFIDA”, Jurnal Teknologi Mineral dan Batubara, 8(2), hlm. 88–96. doi: 10.30556/jtmb.Vol8.No2.2012.796.

Artikel paling banyak dibaca berdasarkan penulis yang sama

<< < 2 3 4 5 6 > >>