PERUBAHAN KOMPOSISI MASERAL DALAM BATUBARA WAHAU SETELAH PROSES PENGERINGAN/UPGRADING

Penulis

  • Miftahul Huda Puslitbang tekMIRA - KESDM
  • Silti Salinita Puslitbang tekMIRA - KESDM
  • Nining Sudini Ningrum Puslitbang tekMIRA - KESDM

DOI:

https://doi.org/10.30556/jtmb.Vol13.No3.2017.173

Kata Kunci:

proses pengeringan, maseral, hidrotermal, reflektan vitrinit

Abstrak

Sebagian besar sumber daya batubara Indonesia adalah batubara peringkat rendah. Batubara ini dapat ditingkatkan nilai kalornya dengan melakukan proses pengeringan (upgrading). Tujuan penelitian ini adalah mengetahui perubahan komposisi sub-maseral dan reflektan vitrinit setelah proses pengeringan. Penelitian upgrading ini dilakukan menggunakan dua metode, yaitu metode hidrotermal dan oksidasi terhadap percontoh batubara Muara Wahau. Hasil penelitian menunjukkan persentase grup maseral eksinit berkurang dan grup maseral vitrinit bertambah setelah proses pengeringan. Dalam grup maseral vitrinit, akibat proses pemanasan desmokolinit lebih stabil dibandingkan dengan maseral lainnya. Pada suhu pengeringan yang tinggi (>150oC), persentase inertinit lebih tinggi pada kondisi atmosfer teroksidasi dibandingkan persentase inertinit hasil proses hidrotermal. Dalam grup maseral inertinit, sklerotinit lebih stabil oleh proses pemanasan dibandingkan maseral lainnya. Nilai rata-rata reflektan vitrinit meningkat pada proses pengeringan hidrotermal dan konstan setelah proses oksidasi. Perubahan struktur molekul batubara antara lain putusnya ikatan C-C pada senyawa alifatik dan terbentuknya senyawa aromatik terkondensasi diperkirakan sebagai penyebab terjadinya perubahan komposisi maseral dan perubahan nilai rata-rata refelektan vitrinit.

Referensi

Anggayana, K., Rahmad, B. and Widayat, A. H. (2014) “Depositional Cycles of Muara Wahau Coals, Kutai Basin, East Kalimantan,” Indonesian Journal on Geoscience, 1(2). doi: 10.17014/ijog.v1i2.183.

Aryono, G. (2015) Laporan kinerja tahun 2015. Jakarta.

Australian Standard (1986) Coal maceral analysis. North Sidney.

Chen, Y., Mastalerz, M. and Schimmelmann, A. (2012) “Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy,” International Journal of Coal Geology, 104, pp. 22–33. doi: 10.1016/j.coal.2012.09.001.

Elvers, B. (2015) Ullmann’s energy: Resources, processes, product. Weinheim, Germany: Wiley VCH.

Feng, J., Li, J. and Li, W. (2013) “Influences of chemical structure and physical properties of coal macerals on coal liquefaction by quantum chemistry calculation,” Fuel Processing Technology, 109, pp. 19–26. doi: 10.1016/j.fuproc.2012.09.033.

Gray, M. R. (1994) Upgrading Petroleum Residues and Heavy Oils. Chemical I. New York: Marcel Dekker.

Guerrero, A., Diez, M. A. and Borrego, A. G. (2013) “Effect of volatile matter release on optical properties of macerals from different rank coals,” Fuel, 114, pp. 21–30. doi: 10.1016/j.fuel.2012.05.023.

Handayani, H. E. and Gusnadi, S. A. (2015) “Pengaruh proses hydrothermal dan oksidasi terhadap perubahan komposisi maseral pada batubara,” Jurnal Teknik Kimia, 21(1), pp. 37–46. Available at: http://jtk.unsri.ac.id/index.php/jtk/article/view/197/268.

Iglesias, M. ., Jiménez, A., del Rı́o, J. . and Suárez-Ruiz, I. (2000) “Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment,” Organic Geochemistry, 31(12), pp. 1285–1299. doi: 10.1016/S0146-6380(00)00086-3.

Jin, L., Han, K., Wang, J. and Hu, H. (2014) “Direct liquefaction behaviors of Bulianta coal and its macerals,” Fuel Processing Technology, 128, pp. 232–237. doi: 10.1016/j.fuproc.2014.07.033.

Mastalerz, M., Hower, J. C. and Taulbee, D. N. (2013) “Variations in chemistry of macerals as refl ected by micro-scale analysis of a Spanish coal,” Geologica Acta, 11(4), pp. 483–493. doi: 10.1344/105.000002054.

Orem, W. H. and Finkelman, R. B. (2014) “Coal formation and geochemistry,” in Treatise on Geochemistry. 2nd ed. Elsevier, pp. 207–232. doi: 10.1016/B978-0-08-095975-7.00708-7.

Sakaguchi, M., Laursen, K., Nakagawa, H. and Miura, K. (2008) “Hydrothermal upgrading of Loy Yang Brown coal - Effect of upgrading conditions on the characteristics of the products,” Fuel Processing Technology, 89(4), pp. 391–396. doi: 10.1016/j.fuproc.2007.11.008.

Santoso, B. (2015) Petrologi batubara Sumatera dan Kalimantan: jenis, peringkat dan aplikasi. Jakarta: LIPI Press.

Santoso, B. and Daulay, B. (2005a) “Significance of type and rank of selected Kutai coals with respect to their utilization characteristics,” Indonesian Mining Journal, 8(3), pp. 1–12.

Santoso, B. and Daulay, B. (2005b) “Type and rank of selected Tertiary Kalimantan coals,” Indonesian Mining Journal, 8(2), pp. 1–12.

Santoso, B. and Utoyo, H. (2012) “Karakteristik petrografis batubara Sebatik-Kalimantan Timur berdasarkan aspek geologisnya,” Jurnal Teknologi Mineral dan Batubara, 8(2), pp. 69–77.

Scott, A. C. (2002) “Coal petrology and the origin of coal macerals: a way ahead?,” International Journal of Coal Geology, 50(1–4), pp. 119–134. doi: 10.1016/S0166-5162(02)00116-7.

Stanger, R., Xie, W., Wall, T., Lucas, J. and Mahoney, M. (2013) “Dynamic behaviour of coal macerals during pyrolysis – Associations between physical, thermal and chemical changes,” Proceedings of the Combustion Institute, 34(2), pp. 2393–2400. doi: 10.1016/j.proci.2012.07.003.

Styan, W. B. and Bustin, R. M. (1983) “Petrography of some fraser river delta peat deposits: Coal maceral and microlithotype precursors in temperate-climate peats,” International Journal of Coal Geology, 2(4), pp. 321–370. doi: 10.1016/0166-5162(83)90016-2.

SuaraKutim.com (2015) PT BEP bangun PLTU 2 x 300 MW di Wahau. Available at: http://www.suarakutim.com/pt-bep-bangun-pltu-2-x-300-mw-di-wahau/ (Accessed: January 1, 2016).

Suárez-Ruiz, I. and Crelling, J. (2008) Applied coal petrology: The role of coal petrology in coal utilization. 1st Editio. Elsivier.

Thomas, L. (2012) Coal Geology. Second Edi. Wiley-Blackwell.

Timpe, R. ., Mann, M. ., Pavlish, J. . and Louie, P. K. . (2001) “Organic sulfur and hap removal from coal using hydrothermal treatment,” Fuel Processing Technology. 2nd Editio. John Wiley & Sons, Inc., 73(2), pp. 127–141. doi: 10.1016/S0378-3820(01)00201-6.

Vasireddy, S., Morreale, B., Cugini, A., Song, C. and Spivey, J. J. (2011) “Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges,” Energy Environmental Science, 4(2), pp. 311–345. doi: 10.1039/C0EE00097C.

Wang, Z., Shui, H., Pei, Z. and Gao, J. (2008) “Study on the hydrothermal treatment of Shenhua coal,” Fuel, 87(4–5), pp. 527–533. doi: 10.1016/j.fuel.2007.03.017.

Zhang, L., Hower, J. C. and Liu, W. (2016) “Devolatilization and kinetics of maceral concentrates of bituminous coals,” Fuel Processing Technology, 154, pp. 147–155. doi: 10.1016/j.fuproc.2016.08.026.

Zhang, Y., Wu, J., Wang, Y., Miao, Z., Si, C., Shang, X. and Zhang, N. (2016) “Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite,” Fuel, 164, pp. 128–133. doi: 10.1016/j.fuel.2015.09.055.

Unduhan

Diterbitkan

2017-08-28

Cara Mengutip

Huda, M., Salinita, S. dan Ningrum, N. S. (2017) “PERUBAHAN KOMPOSISI MASERAL DALAM BATUBARA WAHAU SETELAH PROSES PENGERINGAN/UPGRADING”, Jurnal Teknologi Mineral dan Batubara, 13(3), hlm. 225–235. doi: 10.30556/jtmb.Vol13.No3.2017.173.

Artikel paling banyak dibaca berdasarkan penulis yang sama